Tag Archives: astrophysics

The system Kepler-444 formed when the Milky Way galaxy was a youthful two billion years old. The planets were detected from the dimming that occurs when they transit the disc of their parent star, as shown in this artist's conception.

Image courtesy of NASA

Circular orbits identified for 74 small exoplanets

Observations of 74 Earth-sized planets around distant stars may narrow field of habitable candidates.

By Jennifer Chu


CAMBRIDGE, Mass. – Viewed from above, our solar system’s planetary orbits around the sun resemble rings around a bulls-eye. Each planet, including Earth, keeps to a roughly circular path, always maintaining the same distance from the sun.

The system Kepler-444 formed when the Milky Way galaxy was a youthful two billion years old. The planets were detected from the dimming that occurs when they transit the disc of their parent star, as shown in this artist's conception. Image courtesy of NASA
The system Kepler-444 formed when the Milky Way galaxy was a youthful two billion years old. The planets were detected from the dimming that occurs when they transit the disc of their parent star, as shown in this artist’s conception.
Image courtesy of NASA

For decades, astronomers have wondered whether the solar system’s circular orbits might be a rarity in our universe. Now a new analysis suggests that such orbital regularity is instead the norm, at least for systems with planets as small as Earth.

In a paper published in the Astrophysical Journal, researchers from MIT and Aarhus University in Denmark report that 74 exoplanets, located hundreds of light-years away, orbit their respective stars in circular patterns, much like the planets of our solar system.

These 74 exoplanets, which orbit 28 stars, are about the size of Earth, and their circular trajectories stand in stark contrast to those of more massive exoplanets, some of which come extremely close to their stars before hurtling far out in highly eccentric, elongated orbits.

“Twenty years ago, we only knew about our solar system, and everything was circular and so everyone expected circular orbits everywhere,” says Vincent Van Eylen, a visiting graduate student in MIT’s Department of Physics. “Then we started finding giant exoplanets, and we found suddenly a whole range of eccentricities, so there was an open question about whether this would also hold for smaller planets. We find that for small planets, circular is probably the norm.”

Ultimately, Van Eylen says that’s good news in the search for life elsewhere. Among other requirements, for a planet to be habitable, it would have to be about the size of Earth — small and compact enough to be made of rock, not gas. If a small planet also maintained a circular orbit, it would be even more hospitable to life, as it would support a stable climate year-round. (In contrast, a planet with a more eccentric orbit might experience dramatic swings in climate as it orbited close in, then far out from its star.)

“If eccentric orbits are common for habitable planets, that would be quite a worry for life, because they would have such a large range of climate properties,” Van Eylen says. “But what we find is, probably we don’t have to worry too much because circular cases are fairly common.”

Star-crossed numbers

In the past, researchers have calculated the orbital eccentricities of large, “gas giant” exoplanets using radial velocity — a technique that measures a star’s movement. As a planet orbits a star, its gravitational force will tug on the star, causing it to move in a pattern that reflects the planet’s orbit. However, the technique is most successful for larger planets, as they exert enough gravitational pull to influence their stars.

Researchers commonly find smaller planets by using a transit-detecting method, in which they study the light given off by a star, in search of dips in starlight that signify when a planet crosses, or “transits,” in front of that star, momentarily diminishing its light. Ordinarily, this method only illuminates a planet’s existence, not its orbit. But Van Eylen and his colleague Simon Albrecht, of Aarhus University, devised a way to glean orbital information from stellar transit data.

They first reasoned that if they knew the mass and radius of a planet’s star, they could calculate how long a planet would take to orbit that star, if its orbit were circular. The mass and radius of a star determines its gravitational pull, which in turn influences how fast a planet travels around the star.

By calculating a planet’s orbital velocity in a circular orbit, they could then estimate a transit’s duration — how long a planet would take to cross in front of a star. If the calculated transit matched an actual transit, the researchers reasoned that the planet’s orbit must be circular. If the transit were longer or shorter, the orbit must be more elongated, or eccentric.

Not so eccentric

To obtain actual transit data, the team looked through data collected over the past four years by NASA’s Kepler telescope — a space observatory that surveys a slice of the sky in search of habitable planets. The telescope has monitored the brightness of over 145,000 stars, only a fraction of which have been characterized in any detail.

The team chose to concentrate on 28 stars for which mass and radius have previously been measured, using asteroseismology — a technique that measures stellar pulsations, which reflect a star’s mass and radius.

These 28 stars host multiplanet systems — 74 exoplanets in all. The researchers obtained Kepler data for each exoplanet, looking not only for the occurrence of transits, but also their duration. Given the mass and radius of the host stars, the team calculated each planet’s transit duration if its orbit were circular, then compared the estimated transit durations with actual transit durations from Kepler data.

Across the board, Van Eylen and Albrecht found the calculated and actual transit durations matched, suggesting that all 74 exoplanets maintain circular, not eccentric, orbits.

“We found that most of them matched pretty closely, which means they’re pretty close to being circular,” Van Eylen says. “We are very certain that if very high eccentricities were common, we would’ve seen that, which we don’t.”

Van Eylen says the orbital results for these smaller planets may eventually help to explain why larger planets have more extreme orbits.

“We want to understand why some exoplanets have extremely eccentric orbits, while in other cases, such as the solar system, planets orbit mostly circularly,” Van Eylen says. “This is one of the first times we’ve reliably measured the eccentricities of small planets, and it’s exciting to see they are different from the giant planets, but similar to the solar system.”

This research was funded in part by the European Research Council.

 

Related links

ARCHIVE: New technique allows analysis of clouds around exoplanets
http://newsoffice.mit.edu/2015/clouds-around-exoplanets-0303

ARCHIVE: New technique measures mass of exoplanets
http://newsoffice.mit.edu/2013/new-technique-measures-mass-of-exoplanets-1219

ARCHIVE: Researchers discover that an exoplanet is Earth-like in mass and size
http://newsoffice.mit.edu/2013/kepler-78b-earth-like-in-mass-and-size-1030

 

Source: MIT News Office

Star formation in what are now "dead" galaxies sputtered out billions of years ago. ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope have revealed that three billion years after the Big Bang, these galaxies still made stars on their outskirts, but no longer in their interiors. The quenching of star formation seems to have started in the cores of the galaxies and then spread to the outer parts.

This diagram illustrates this process. Galaxies in the early Universe appear at the left. The blue regions are where star formation is in progress and the red regions are the "dead" regions where only older redder stars remain and there are no more young blue stars being formed. The resulting giant spheroidal galaxies in the modern Universe appear on the right.

Credit:
ESO

Giant Galaxies Die from the Inside Out

VLT and Hubble observations show that star formation shuts down in the centres of elliptical galaxies first


Astronomers have shown for the first time how star formation in “dead” galaxies sputtered out billions of years ago. ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope have revealed that three billion years after the Big Bang, these galaxies still made stars on their outskirts, but no longer in their interiors. The quenching of star formation seems to have started in the cores of the galaxies and then spread to the outer parts. The results will be published in the 17 April 2015 issue of the journal Science.

Star formation in what are now "dead" galaxies sputtered out billions of years ago. ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope have revealed that three billion years after the Big Bang, these galaxies still made stars on their outskirts, but no longer in their interiors. The quenching of star formation seems to have started in the cores of the galaxies and then spread to the outer parts. This diagram illustrates this process. Galaxies in the early Universe appear at the left. The blue regions are where star formation is in progress and the red regions are the "dead" regions where only older redder stars remain and there are no more young blue stars being formed. The resulting giant spheroidal galaxies in the modern Universe appear on the right. Credit: ESO
Star formation in what are now “dead” galaxies sputtered out billions of years ago. ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope have revealed that three billion years after the Big Bang, these galaxies still made stars on their outskirts, but no longer in their interiors. The quenching of star formation seems to have started in the cores of the galaxies and then spread to the outer parts.
This diagram illustrates this process. Galaxies in the early Universe appear at the left. The blue regions are where star formation is in progress and the red regions are the “dead” regions where only older redder stars remain and there are no more young blue stars being formed. The resulting giant spheroidal galaxies in the modern Universe appear on the right.
Credit:
ESO

A major astrophysical mystery has centred on how massive, quiescent elliptical galaxies, common in the modern Universe, quenched their once furious rates of star formation. Such colossal galaxies, often also called spheroids because of their shape, typically pack in stars ten times as densely in the central regions as in our home galaxy, the Milky Way, and have about ten times its mass.

Astronomers refer to these big galaxies as red and dead as they exhibit an ample abundance of ancient red stars, but lack young blue stars and show no evidence of new star formation. The estimated ages of the red stars suggest that their host galaxies ceased to make new stars about ten billion years ago. This shutdown began right at the peak of star formation in the Universe, when many galaxies were still giving birth to stars at a pace about twenty times faster than nowadays.

“Massive dead spheroids contain about half of all the stars that the Universe has produced during its entire life,” said Sandro Tacchella of ETH Zurich in Switzerland, lead author of the article. “We cannot claim to understand how the Universe evolved and became as we see it today unless we understand how these galaxies come to be.”

Tacchella and colleagues observed a total of 22 galaxies, spanning a range of masses, from an era about three billion years after the Big Bang [1]. The SINFONI instrument on ESO’s Very Large Telescope (VLT) collected light from this sample of galaxies, showing precisely where they were churning out new stars. SINFONI could make these detailed measurements of distant galaxies thanks to its adaptive optics system, which largely cancels out the blurring effects of Earth’s atmosphere.

The researchers also trained the NASA/ESA Hubble Space Telescope on the same set of galaxies, taking advantage of the telescope’s location in space above our planet’s distorting atmosphere. Hubble’s WFC3 camera snapped images in the near-infrared, revealing the spatial distribution of older stars within the actively star-forming galaxies.

“What is amazing is that SINFONI’s adaptive optics system can largely beat down atmospheric effects and gather information on where the new stars are being born, and do so with precisely the same accuracy as Hubble allows for the stellar mass distributions,” commented Marcella Carollo, also of ETH Zurich and co-author of the study.

According to the new data, the most massive galaxies in the sample kept up a steady production of new stars in their peripheries. In their bulging, densely packed centres, however, star formation had already stopped.

“The newly demonstrated inside-out nature of star formation shutdown in massive galaxies should shed light on the underlying mechanisms involved, which astronomers have long debated,” says Alvio Renzini, Padova Observatory, of the Italian National Institute of Astrophysics.

A leading theory is that star-making materials are scattered by torrents of energy released by a galaxy’s central supermassive black hole as it sloppily devours matter. Another idea is that fresh gas stops flowing into a galaxy, starving it of fuel for new stars and transforming it into a red and dead spheroid.

“There are many different theoretical suggestions for the physical mechanisms that led to the death of the massive spheroids,” said co-author Natascha Förster Schreiber, at the Max-Planck-Institut für extraterrestrische Physik in Garching, Germany. “Discovering that the quenching of star formation started from the centres and marched its way outwards is a very important step towards understanding how the Universe came to look like it does now.”

Notes
[1] The Universe’s age is about 13.8 billion years, so the galaxies studied by Tacchella and colleagues are generally seen as they were more than 10 billion years ago.

Source: ESO


First Signs of Self-interacting Dark Matter?

Dark matter may not be completely dark after all


Based on our current scientific understanding of the universe and various surveys like the Cosmic Microwave Background observations by Planck or WMAP, we still only know about 4-5% of the visible or baryonic matter. Rest of the 96-94% is still a mystery. This huge unknown portion of the dark universe is known to be comprised of the dark energy (the source of accelerating expansion of the universe)  and dark matter (the extra un-explained mass of the galaxies). Despite having indirect signatures suggesting their presence, we still are not able to observe these phenomena.

For the first time dark matter may have been observed interacting with other dark matter in a way other than through the force of gravity. Observations of colliding galaxies made with ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope have picked up the first intriguing hints about the nature of this mysterious component of the Universe.

This image from the NASA/ESA Hubble Space Telescope shows the rich galaxy cluster Abell 3827. The strange pale blue structures surrounding the central galaxies are gravitationally lensed views of a much more distant galaxy behind the cluster. The distribution of dark matter in the cluster is shown with blue contour lines. The dark matter clump for the galaxy at the left is significantly displaced from the position of the galaxy itself, possibly implying dark matter-dark matter interactions of an unknown nature are occuring. Credit: ESO/R. Massey
This image from the NASA/ESA Hubble Space Telescope shows the rich galaxy cluster Abell 3827. The strange pale blue structures surrounding the central galaxies are gravitationally lensed views of a much more distant galaxy behind the cluster.
The distribution of dark matter in the cluster is shown with blue contour lines. The dark matter clump for the galaxy at the left is significantly displaced from the position of the galaxy itself, possibly implying dark matter-dark matter interactions of an unknown nature are occuring.
Credit:
ESO/R. Massey

Using the MUSE instrument on ESO’s VLT in Chile, along with images from Hubble in orbit, a team of astronomers studied the simultaneous collision of four galaxies in the galaxy cluster Abell 3827. The team could trace out where the mass lies within the system and compare the distribution of the dark matter with the positions of the luminous galaxies.

Although dark matter cannot be seen, the team could deduce its location using a technique called gravitational lensing. The collision happened to take place directly in front of a much more distant, unrelated source. The mass of dark matter around the colliding galaxies severely distorted spacetime, deviating the path of light rays coming from the distant background galaxy — and distorting its image into characteristic arc shapes.

Our current understanding is that all galaxies exist inside clumps of dark matter. Without the constraining effect of dark matter’s gravity, galaxies like the Milky Way would fling themselves apart as they rotate. In order to prevent this, 85 percent of the Universe’s mass [1] must exist as dark matter, and yet its true nature remains a mystery.

In this study, the researchers observed the four colliding galaxies and found that one dark matter clump appeared to be lagging behind the galaxy it surrounds. The dark matter is currently 5000 light-years (50 000 million million kilometres) behind the galaxy — it would take NASA’s Voyager spacecraft 90 million years to travel that far.

A lag between dark matter and its associated galaxy is predicted during collisions if dark matter interacts with itself, even very slightly, through forces other than gravity [2]. Dark matter has never before been observed interacting in any way other than through the force of gravity.

Lead author Richard Massey at Durham University, explains: “We used to think that dark matter just sits around, minding its own business, except for its gravitational pull. But if dark matter were being slowed down during this collision, it could be the first evidence for rich physics in the dark sector — the hidden Universe all around us.”

The researchers note that more investigation will be needed into other effects that could also produce a lag. Similar observations of more galaxies, and computer simulations of galaxy collisions will need to be made.

Team member Liliya Williams of the University of Minnesota adds: “We know that dark matter exists because of the way that it interacts gravitationally, helping to shape the Universe, but we still know embarrassingly little about what dark matter actually is. Our observation suggests that dark matter might interact with forces other than gravity, meaning we could rule out some key theories about what dark matter might be.”

This result follows on from a recent result from the team which observed 72 collisions between galaxy clusters [3] and found that dark matter interacts very little with itself. The new work however concerns the motion of individual galaxies, rather than clusters of galaxies. Researchers say that the collision between these galaxies could have lasted longer than the collisions observed in the previous study — allowing the effects of even a tiny frictional force to build up over time and create a measurable lag [4].

Taken together, the two results bracket the behaviour of dark matter for the first time. Dark matter interacts more than this, but less than that. Massey added: “We are finally homing in on dark matter from above and below — squeezing our knowledge from two directions.”

Notes
[1] Astronomers have found that the total mass/energy content of the Universe is split in the proportions 68% dark energy, 27% dark matter and 5% “normal” matter. So the 85% figure relates to the fraction of “matter” that is dark.

[2] Computer simulations show that the extra friction from the collision would make the dark matter slow down. The nature of that interaction is unknown; it could be caused by well-known effects or some exotic unknown force. All that can be said at this point is that it is not gravity.

All four galaxies might have been separated from their dark matter. But we happen to have a very good measurement from only one galaxy, because it is by chance aligned so well with the background, gravitationally lensed object. With the other three galaxies, the lensed images are further away, so the constraints on the location of their dark matter too loose to draw statistically significant conclusions.

[3] Galaxy clusters contain up to a thousand individual galaxies.

[4] The main uncertainty in the result is the timespan for the collision: the friction that slowed the dark matter could have been a very weak force acting over about a billion years, or a relatively stronger force acting for “only” 100 million years.

Source: ESO

The SPHERE instrument is shown shortly after it was installed on ESO’s VLT Unit Telescope 3. The instrument itself is the black box, located on the platform to one side of the telescope.

Credit:
ESO/J. Girard

The Strange Case of the Missing Dwarf

New SPHERE instrument shows its power


The new SPHERE instrument on ESO’s Very Large Telescope has been used to search for a brown dwarf expected to be orbiting the unusual double star V471 Tauri. SPHERE has given astronomers the best look so far at the surroundings of this intriguing object and they found — nothing. The surprising absence of this confidently predicted brown dwarf means that the conventional explanation for the odd behaviour of V471 Tauri is wrong. This unexpected result is described in the first science paper based on observations from SPHERE.

Some pairs of stars consist of two normal stars with slightly different masses. When the star of slightly higher mass ages and expands to become a red giant, material is transferred to other star and ends up surrounding both stars in a huge gaseous envelope. When this cloud disperses the two move closer together and form a very tight pair with one white dwarf, and one more normal star [1].

The SPHERE instrument is shown shortly after it was installed on ESO’s VLT Unit Telescope 3. The instrument itself is the black box, located on the platform to one side of the telescope. Credit: ESO/J. Girard
The SPHERE instrument is shown shortly after it was installed on ESO’s VLT Unit Telescope 3. The instrument itself is the black box, located on the platform to one side of the telescope.
Credit:
ESO/J. Girard

One such stellar pair is called V471 Tauri [2]. It is a member of the Hyades star cluster in the constellation of Taurus and is estimated to be around 600 million years old and about 163 light-years from Earth. The two stars are very close and orbit each other every 12 hours. Twice per orbit one star passes in front of the other — which leads to regular changes in the brightness of the pair observed from Earth as they eclipse each other.

A team of astronomers led by Adam Hardy (Universidad Valparaíso, Valparaíso, Chile) first used the ULTRACAM system on ESO’s New Technology Telescope to measure these brightness changes very precisely. The times of the eclipses were measured with an accuracy of better than two seconds — a big improvement on earlier measurements.

The eclipse timings were not regular, but could be explained well by assuming that there was a brown dwarf orbiting both stars whose gravitational pull was disturbing the orbits of the stars. They also found hints that there might be a second small companion object.

Up to now however, it has been impossible to actually image a faint brown dwarf so close to much brighter stars. But the power of the newly installed SPHERE instrument on ESO’s Very Large Telescope allowed the team to look for the first time exactly where the brown dwarf companion was expected to be. But they saw nothing, even though the very high quality images from SPHERE should have easily revealed it [3].

There are many papers suggesting the existence of such circumbinary objects, but the results here provide damaging evidence against this hypothesis,” remarks Adam Hardy.

If there is no orbiting object then what is causing the odd changes to the orbit of the binary? Several theories have been proposed, and, while some of these have already been ruled out, it is possible that the effects are caused by magnetic field variations in the larger of the two stars [4], somewhat similar to the smaller changes seen in the Sun.

A study such as this has been necessary for many years, but has only become possible with the advent of powerful new instruments such as SPHERE. This is how science works: observations with new technology can either confirm, or as in this case disprove, earlier ideas. This is an excellent way to start the observational life of this amazing instrument,” concludes Adam Hardy.

Notes

[1] Such pairs are known as post-common-envelope binaries.

[2] This name means that the object is the 471st variable star (or as closer analysis shows, pair of stars) to be identified in the constellation of Taurus.

[3] The SPHERE images are so accurate that they would have been able to reveal a companion such as a brown dwarf that is 70 000 times fainter than the central star, and only 0.26 arcseconds away from it. The expected brown dwarf companion in this case was predicted to be much brighter.

[4] This effect is called the Applegate mechanism and results in regular changes in the shape of the star, which can lead to changes in the apparent brightness of the double star seen from Earth.

Soure : ESO

Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel

NASA’s Chandra Weighs Most Massive Galaxy Cluster in Distant Universe

Using NASA’s Chandra X-ray Observatory, astronomers have made the first determination of the mass and other properties of a very young, distant galaxy cluster.

The Chandra study shows that the galaxy cluster, seen at the comparatively young age of about 800 million years, is the most massive known cluster with that age or younger. As the largest gravitationally- bound structures known, galaxy clusters can act as crucial gauges for how the Universe itself has evolved over time.

The galaxy cluster was originally discovered using ESA’s XMM-Newton observatory and is located about 9.6 billion light years from Earth. Astronomers used X-ray data from Chandra that, when combined with scientific models, provides an accurate weight of the cluster, which comes in at a whopping 400 trillion times the mass of the Sun. Scientists believe the cluster formed about 3.3 billion years after the Big Bang.

Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel
Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel

The cluster is officially named XDCP J0044.0-2033, but the researchers have nicknamed it “Gioiello”, which is Italian for “jewel”. They chose this name because an image of the cluster contains many sparkling colors from the hot, X-ray emitting gas and various star-forming galaxies within the cluster. Also, the research team met to discuss the Chandra data for the first time at Villa il Gioiello, a 15th century villa near the Observatory of Arcetri, which was the last residence of prominent Italian astronomer Galileo Galilei.

“Finding this enormous galaxy cluster at this early epoch means that there could be more out there,” said Paolo Tozzi of the National Institute for Astrophysics (INAF) in Florence, Italy, who led the new study. “This kind of information could have an impact on our understanding of how the large scale structure of the Universe formed and evolved.”

Previously, astronomers had found an enormous galaxy cluster, known as “El Gordo,” at a distance of 7 billion light years away and a few other large, distant clusters. According to the best current model for how the Universe evolved, there is a low chance of finding clusters as massive as the Gioiello Cluster and El Gordo. The new findings suggest that there might be problems with the theory, and are enticing astronomers to look for other distant and massive clusters.

“The hint that there might be problems with the standard model of cosmology is interesting,” said co-author James Jee of the University of California in Davis, “but we need bigger and deeper samples of clusters before we can tell if there’s a real problem.”

The Chandra observation of the Gioiello Cluster lasted over 4 days and is the deepest X-ray observation yet made on a cluster beyond a distance of about 8 billion light years.

“Unlike the galaxy clusters that are close to us, this cluster still has lots of stars forming within its galaxies,” said co-author Joana Santos, also from INAF in Florence. “This gives us a unique window into what galaxy clusters are like when they are very young.”

 

In the past, astronomers have reported finding several galaxy cluster candidates that are located more than 9.5 billion light years away. However, some of these objects turned out to be protoclusters, that is, precursors to fully developed galaxy clusters.

The researchers also note that there are hints of uneven structure in the hot gas. These may be large clumps that could have been caused by collisions and mergers with smaller clusters of galaxies and provides clues to how the cluster became so hefty at its early age. The authors expect that the cluster is still young enough to be undergoing many such interactions.

A paper describing these results will appear in an upcoming issue of The Astrophysical Journal and is available online. NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra’s science and flight operations.

An interactive image, a podcast, and a video about these findings are available at:
http://chandra.si.edu

For Chandra images, multimedia and related materials, visit:
http://www.nasa.gov/chandra

 

Source: Chandra X-Ray Observatory

This spectacular image of the star cluster Messier 47 was taken using the Wide Field Imager camera, installed on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile. This young open cluster is dominated by a sprinkling of brilliant blue stars but also contains a few contrasting red giant stars.

Credit:
ESO

The Hot Blue Stars of Messier 47

This spectacular image of the star cluster Messier 47 was taken using the Wide Field Imager camera, installed on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile. This young open cluster is dominated by a sprinkling of brilliant blue stars but also contains a few contrasting red giant stars.

Messier 47 is located approximately 1600 light-years from Earth, in the constellation of Puppis (the poop deck of the mythological ship Argo). It was first noticed some time before 1654 by Italian astronomer Giovanni Battista Hodierna and was later independently discovered by Charles Messier himself, who apparently had no knowledge of Hodierna’s earlier observation.

Although it is bright and easy to see, Messier 47 is one of the least densely populated open clusters. Only around 50 stars are visible in a region about 12 light-years across, compared to other similar objects which can contain thousands of stars.

Messier 47 has not always been so easy to identify. In fact, for years it was considered missing, as Messier had recorded the coordinates incorrectly. The cluster was later rediscovered and given another catalogue designation — NGC 2422. The nature of Messier’s mistake, and the firm conclusion that Messier 47 and NGC 2422 are indeed the same object, was only established in 1959 by Canadian astronomer T. F. Morris.

This spectacular image of the star cluster Messier 47 was taken using the Wide Field Imager camera, installed on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile. This young open cluster is dominated by a sprinkling of brilliant blue stars but also contains a few contrasting red giant stars. Credit: ESO
This spectacular image of the star cluster Messier 47 was taken using the Wide Field Imager camera, installed on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile. This young open cluster is dominated by a sprinkling of brilliant blue stars but also contains a few contrasting red giant stars.
Credit:
ESO



The bright blue–white colours of these stars are an indication of their temperature, with hotter stars appearing bluer and cooler stars appearing redder. This relationship between colour, brightness and temperature can be visualised by use of the Planck curve. But the more detailed study of the colours of stars using spectroscopy also tells astronomers a lot more — including how fast the stars are spinning and their chemical compositions. There are also a few bright red stars in the picture — these are red giant stars that are further through their short life cycles than the less massive and longer-lived blue stars [1].

By chance Messier 47 appears close in the sky to another contrasting star cluster — Messier 46. Messier 47 is relatively close, at around 1600 light-years, but Messier 46 is located around 5500 light-years away and contains a lot more stars, with at least 500 stars present. Despite containing more stars, it appears significantly fainter due to its greater distance.

Messier 46 could be considered to be the older sister of Messier 47, with the former being approximately 300 million years old compared to the latter’s 78 million years. Consequently, many of the most massive and brilliant of the stars in Messier 46 have already run through their short lives and are no longer visible, so most stars within this older cluster appear redder and cooler.

This image of Messier 47 was produced as part of the ESO Cosmic Gems programme [2].

Notes

[1] The lifetime of a star depends primarily on its mass. Massive stars, containing many times as much material as the Sun, have short lives measured in millions of years. On the other hand much less massive stars can continue to shine for many billions of years. In a cluster, the stars all have about the same age and same initial chemical composition. So the brilliant massive stars evolve quickest, become red giants sooner, and end their lives first, leaving the less massive and cooler ones to long outlive them.

[2] The ESO Cosmic Gems programme is an outreach initiative to produce images of interesting, intriguing or visually attractive objects using ESO telescopes, for the purposes of education and public outreach. The programme makes use of telescope time that cannot be used for science observations. All data collected may also be suitable for scientific purposes, and are made available to astronomers through ESO’s science archive.

More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Source: ESO 

Researchers use real data rather than theory to measure the cosmos

For the first time researchers have measured large distances in the Universe using data, rather than calculations related to general relativity.

A research team from Imperial College London and the University of Barcelona has used data from astronomical surveys to measure a standard distance that is central to our understanding of the expansion of the universe.

Previously the size of this ‘standard ruler’ has only been predicted from theoretical models that rely on general relativity to explain gravity at large scales. The new study is the first to measure it using observed data. A standard ruler is an object which consistently has the same physical size so that a comparison of its actual size to its size in the sky will provide a measurement of its distance to earth.

“Our research suggests that current methods for measuring distance in the Universe are more complicated than they need to be,” said Professor Alan Heavens from the Department of Physics, Imperial College London who led the study. “Traditionally in cosmology, general relativity plays a central role in most models and interpretations. We have demonstrated that current data are powerful enough to measure the geometry and expansion history of the Universe without relying on calculations relating to general relativity.

“We hope this more data-driven approach, combined with an ever increasing wealth of observational data, could provide more precise measurements that will be useful for future projects that are planning to answer major questions around the acceleration of the Universe and dark energy.”

The standard ruler measured in the research is the baryon acoustic oscillation scale. This is a pattern of a specific length which is imprinted in the clustering of matter created by small variations in density in the very early Universe (about 400,000 years after the Big Bang). The length of this pattern, which is the same today as it was then, is the baryon acoustic oscillation scale.

The team calculated the length to be 143 Megaparsecs (nearly 480 million light years) which is similar to accepted predictions for this distance from models based on general relativity.

Published in Physical Review Letters, the findings of the research suggest it is possible to measure cosmological distances independently from models that rely on general relativity.

Einstein’s theory of general relativity replaced Newton’s law to become the accepted explanation of how gravity behaves at large scales. Many important astrophysics models are based on general relativity, including those dealing with the expansion of the Universe and black holes. However some unresolved issues surround general relativity. These include its lack of reconciliation with the laws of quantum physics and the need for it to be extrapolated many orders of magnitude in scales in order to apply it in cosmological settings. No other physics law have been extrapolated that much without needing any adjustment, so its assumptions are still open to question.

Co-author of the study, Professor Raul Jimenez from the University of Barcelona said: “The uncertainties around general relativity have motivated us to develop methods to derive more direct measurements of the cosmos, rather than relying so heavily on inferences from models. For our study we only made some minimal theoretical assumptions such as the symmetry of the Universe and a smooth expansion history.”

Co-author Professor Licia Verde from the University of Barcelona added: “There is a big difference between measuring distance and inferring its value indirectly. Usually in cosmology we can only do the latter and this is one of these rare and precious cases where we can directly measure distance. Most statements in cosmology assume general relativity works and does so on extremely large scales, which means we are often extrapolating figures out of our comfort zone. So it is reassuring to discover that we can make strong and important statements without depending on general relativity and which match previous statements. It gives one confidence that the observations we have of the Universe, as strange and puzzling as they might be, are realistic and sound!”

The research used current data from astronomical surveys on the brightness of exploding stars (supernovae) and on the regular pattern in the clustering of matter (baryonic acoustic oscillations) to measure the size of this ‘standard ruler’. The matter that created this standard ruler formed about 400,000 years after the Big Bang. This period was a time when the physics of the Universe was still relatively simple so the researchers did not need to consider more ‘exotic’ concepts such as dark energy in their measurements.

“In this study we have used measurements that are very clean,” Professor Heavens explained, “And the theory that we do apply comes from a time relatively soon after the Big Bang when the physics was also clean. This means we have what we believe to be a precise method of measurement based on observations of the cosmos. Astrophysics is an incredibly active but changeable field and the support for the different models is liable to change. Even when models are abandoned, measurements of the cosmos will survive. If we can rely on direct measurements based on real observations rather than theoretical models then this is good news for cosmology and astrophysics.”

The research was supported by the Royal Society and the European Research Council.

Source : Imperial College

Radio-optical overlay image of galaxy J1649+2635. Yellow is visible-light image; Blue is the radio image, indicating the presence of jets.

Credit: Mao et al., NRAO/AUI/NSF, Sloan Digital Sky Survey

Strange Galaxy Perplexes Astronomers

With the help of citizen scientists, a team of astronomers has found an important new example of a very rare type of galaxy that may yield valuable insight on how galaxies developed in the early Universe. The new discovery technique promises to give astronomers many more examples of this important and mysterious type of galaxy.

The galaxy they studied, named J1649+2635, nearly 800 million light-years from Earth, is a spiral galaxy, like our own Milky Way, but with prominent “jets” of subatomic particles propelled outward from its core at nearly the speed of light. The problem is that spiral galaxies are not supposed to have such large jets.

“The conventional wisdom is that such jets come only from elliptical galaxies that formed through the merger of spirals. We don’t know how spirals can have these large jets,” said Minnie Mao, of the National Radio Astronomy Observatory (NRAO).

Radio-optical overlay image of galaxy J1649+2635. Yellow is visible-light image; Blue is the radio image, indicating the presence of jets. Credit: Mao et al., NRAO/AUI/NSF, Sloan Digital Sky Survey
Radio-optical overlay image of galaxy J1649+2635. Yellow is visible-light image; Blue is the radio image, indicating the presence of jets.
Credit: Mao et al., NRAO/AUI/NSF, Sloan Digital Sky Survey



J1649+2635 is only the fourth jet-emitting spiral galaxy discovered so far. The first was found in 2003, when astronomers combined a radio-telescope image from the Karl G. Jansky Very Large Array (VLA) and a visible-light image of the same object from the Hubble Space Telescope. The second was revealed in 2011 by images from the Sloan Digital Sky Survey and the VLA, and the third, found earlier this year, also was discovered by combining radio and visible-light images.

“In order to figure out how these jets can be produced by the ‘wrong’ kind of galaxy, we realized we needed to find more of them,” Mao said.

To do that, the astronomers looked for help. That help came in the form of large collections of images from both radio and optical telescopes, and the hands-on assistance of volunteer citizen scientists. The volunteers are participants in an online project called the Galaxy Zoo, in which they look at images from the visible-light Sloan Digital Sky Survey and classify the galaxies as spiral, elliptical, or other types. Each galaxy image is inspected by multiple volunteers to ensure accuracy in the classification.

So far, more than 150,000 Galaxy Zoo participants have classified some 700,000 galaxies. Mao and her collaborators used a “superclean” subset of more than 65,000 galaxies, for which 95 percent of those viewing each galaxy’s image agreed on the classification. About 35,000 of those are spiral galaxies. J1649+2635 had been classified by 31 Galaxy Zoo volunteers, 30 of whom agreed that it is a spiral.

Next, the astronomers decided to cross-match the visible-light spirals with galaxies in a catalog that combines data from the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty Centimeters survey, both done using the VLA. This job was done by Ryan Duffin, a University of Virginia undergraduate working as an NRAO summer student. Duffin’s cross-matching showed that J1649+2635 is both a spiral galaxy and has powerful twin radio jets.

“This is the first time that a galaxy was first identified as a spiral, then subsequently found to have large radio jets,” Duffin said. “It was exciting to make such a rare find,” he added.

Jets such as those seen coming from J1649+2635 are propelled by the gravitational energy of a supermassive black hole at the core of the galaxy. Material pulled toward the black hole forms a rapidly-rotating disk, and particles are accelerated outward along the poles of the disk. The collision that presumably forms an elliptical galaxy disrupts gas in the merging galaxies and provides “fuel” for the disk and acceleration mechanism. That same disruption, however, is expected to destroy any spiral structure as the galaxies merge into one.

J1649+2635 is unusual not only because of its jets, but also because it is the first example of a “grand design” spiral galaxy with a large “halo” of visible-light emission surrounding it. 

“This galaxy presents us with many mysteries. We want to know how it became such a strange beast,” Mao said. “Did it have a unique type of merger that preserved its spiral structure? Was it an elliptical that had another collision that made it re-grow spiral arms? Is its unique character the result of interaction with its environment?”

“We will study it further, but in addition, we need to see if there are more like it,” Mao said.

“We hope that with projects like the Galaxy Zoo and another called Radio Galaxy Zoo, those thousands of citizen scientists can help us find many more galaxies like this one so we can answer all our questions,” Mao said. Mao and her colleagues have dubbed these rare galaxies “Spiral DRAGNs,” an acronym for the technical description, “Double-lobed Radio sources Associated with Galactic Nuclei.”

Mao and Duffin worked with Frazer Owen, Emmanuel Momjian, and Mark Lacy, also of the NRAO; Bill Keel of the University of Alabama; Glenn Morrison of the University of Hawaii and the Canada-France-Hawaii Telescope; Tony Mroczkowski of the Naval Research Laboratory; Susan Neff of NASA’s Goddard Space Flight Center; Ray Norris of CSIRO Astronomy and Space Science in Australia; Henrique Schmitt of the Naval Research Laboratory; and Vicki Toy and Sylvain Veilleux of the University of Maryland. The scientists are reporting their findings in theMonthly Notices of the Royal Astronomical Society. 

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Source: NRAO

Time to Wake Up: Artist’s impression of NASA’s New Horizons spacecraft, currently en route to Pluto. Operators at the Johns Hopkins University Applied Physics Laboratory are preparing to “wake” the spacecraft from electronic hibernation on Dec. 6, when the probe will be more than 2.9 billion miles from Earth. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

New Horizons Set to Wake Up for Pluto Encounter

NASA’s New Horizons spacecraft comes out of hibernation for the last time on Dec. 6. Between now and then, while the Pluto-bound probe enjoys three more weeks of electronic slumber, work on Earth is well under way to prepare the spacecraft for a six-month encounter with the dwarf planet that begins in January.

“New Horizons is healthy and cruising quietly through deep space – nearly three billion miles from home – but its rest is nearly over,” says Alice Bowman, New Horizons mission operations manager at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md. “It’s time for New Horizons to wake up, get to work, and start making history.”

Since launching in January 2006, New Horizons has spent 1,873 days in hibernation – about two-thirds of its flight time – spread over 18 separate hibernation periods from mid-2007 to late 2014 that ranged from 36 days to 202 days long.

In hibernation mode much of the spacecraft is unpowered; the onboard flight computer monitors system health and broadcasts a weekly beacon-status tone back to Earth. On average, operators woke New Horizons just over twice each year to check out critical systems, calibrate instruments, gather science data, rehearse Pluto-encounter activities and perform course corrections when necessary.

New Horizons pioneered routine cruise-flight hibernation for NASA. Not only has hibernation reduced wear and tear on the spacecraft’s electronics, it lowered operations costs and freed up NASA Deep Space Network tracking and communication resources for other missions.

Ready to Go

Next month’s wake-up call was preprogrammed into New Horizons’ on-board computer in August, commanding it come out of hibernation at 3 p.m. EST on Dec. 6. About 90 minutes later New Horizons will transmit word to Earth that it’s in “active” mode; those signals, even traveling at light speed, will need four hours and 25 minutes to reach home. Confirmation should reach the mission operations team at APL around 9:30 p.m. EST. At the time New Horizons will be more than 2.9 billion miles from Earth, and just 162 million miles – less than twice the distance between Earth and the sun – from Pluto.

Time to Wake Up: Artist’s impression of NASA’s New Horizons spacecraft, currently en route to Pluto. Operators at the Johns Hopkins University Applied Physics Laboratory are preparing to “wake” the spacecraft from electronic hibernation on Dec. 6, when the probe will be more than 2.9 billion miles from Earth. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
Time to Wake Up: Artist’s impression of NASA’s New Horizons spacecraft, currently en route to Pluto. Operators at the Johns Hopkins University Applied Physics Laboratory are preparing to “wake” the spacecraft from electronic hibernation on Dec. 6, when the probe will be more than 2.9 billion miles from Earth. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)

After several days of collecting navigation-tracking data, downloading and analyzing the cruise science and spacecraft housekeeping data stored on New Horizons’ digital recorders, the mission team will begin activities that include conducting final tests on the spacecraft’s science instruments and operating systems, and building and testing the computer-command sequences that will guide New Horizons through its flight to and reconnaissance of the Pluto system. Tops on the mission’s science list are characterizing the global geology and topography of Pluto and its large moon Charon, mapping their surface compositions and temperatures, examining Pluto’s atmospheric composition and structure, studying Pluto’s smaller moons and searching for new moons and rings.

New Horizons’ seven-instrument science payload, developed under direction of Southwest Research Institute, includes advanced imaging infrared and ultraviolet spectrometers, a compact multicolor camera, a high-resolution telescopic camera, two powerful particle spectrometers, a space-dust detector (designed and built by students at the University of Colorado) and two radio science experiments. The entire spacecraft, drawing electricity from a single radioisotope thermoelectric generator, operates on less power than a pair of 100-watt light bulbs.

Distant observations of the Pluto system begin Jan. 15 and will continue until late July 2015; closest approach to Pluto is July 14.

“We’ve worked years to prepare for this moment,” says Mark Holdridge, New Horizons encounter mission manager at APL. “New Horizons might have spent most of its cruise time across nearly three billion miles of space sleeping, but our team has done anything but, conducting a flawless flight past Jupiter just a year after launch, putting the spacecraft through annual workouts, plotting out each step of the Pluto flyby and even practicing the entire Pluto encounter on the spacecraft. We are ready to go.”

“The final hibernation wake up Dec. 6 signifies the end of an historic cruise across the entirety of our planetary system,” added New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute. “We are almost on Pluto’s doorstep!”

The Johns Hopkins Applied Physics Laboratory manages the New Horizons mission for NASA’s Science Mission Directorate. Alan Stern, of the Southwest Research Institute (SwRI) is the principal investigator and leads the mission; SwRI leads the science team, payload operations, and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Ala. APL designed, built and operates the New Horizons spacecraft.

Source: JHUAPL

This artist's impression shows schematically the mysterious alignments between the spin axes of quasars and the large-scale structures that they inhabit that observations with ESO’s Very Large Telescope have revealed. These alignments are over billions of light-years and are the largest known in the Universe.

The large-scale structure is shown in blue and quasars are marked in white with the rotation axes of their black holes indicated with a line.

This picture is for illustration only and does not depict the real distribution of galaxies and quasars.

Credit:

ESO/M. Kornmesser

Spooky Alignment of Quasars Across Billions of Light-years

VLT reveals alignments between supermassive black hole axes and large-scale structure


New observations with ESO’s Very Large Telescope (VLT) in Chile have revealed alignments over the largest structures ever discovered in the Universe. A European research team has found that the rotation axes of the central supermassive black holes in a sample of quasars are parallel to each other over distances of billions of light-years. The team has also found that the rotation axes of these quasars tend to be aligned with the vast structures in the cosmic web in which they reside.

Quasars are galaxies with very active supermassive black holes at their centres. These black holes are surrounded by spinning discs of extremely hot material that is often spewed out in long jets along their axes of rotation. Quasars can shine more brightly than all the stars in the rest of their host galaxies put together.

This artist's impression shows schematically the mysterious alignments between the spin axes of quasars and the large-scale structures that they inhabit that observations with ESO’s Very Large Telescope have revealed. These alignments are over billions of light-years and are the largest known in the Universe. The large-scale structure is shown in blue and quasars are marked in white with the rotation axes of their black holes indicated with a line. This picture is for illustration only and does not depict the real distribution of galaxies and quasars. Credit: ESO/M. Kornmesser
This artist’s impression shows schematically the mysterious alignments between the spin axes of quasars and the large-scale structures that they inhabit that observations with ESO’s Very Large Telescope have revealed. These alignments are over billions of light-years and are the largest known in the Universe.
The large-scale structure is shown in blue and quasars are marked in white with the rotation axes of their black holes indicated with a line.
This picture is for illustration only and does not depict the real distribution of galaxies and quasars.
Credit:
ESO/M. Kornmesser

A team led by Damien Hutsemékers from the University of Liège in Belgium used the FORS instrument on the VLT to study 93 quasars that were known to form huge groupings spread over billions of light-years, seen at a time when the Universe was about one third of its current age.

The first odd thing we noticed was that some of the quasars’ rotation axes were aligned with each other — despite the fact that these quasars are separated by billions of light-years,” said Hutsemékers.

The team then went further and looked to see if the rotation axes were linked, not just to each other, but also to the structure of the Universe on large scales at that time.

When astronomers look at the distribution of galaxies on scales of billions of light-years they find that they are not evenly distributed. They form a cosmic web of filaments and clumps around huge voids where galaxies are scarce. This intriguing and beautiful arrangement of material is known as large-scale structure.

The new VLT results indicate that the rotation axes of the quasars tend to be parallel to the large-scale structures in which they find themselves. So, if the quasars are in a long filament then the spins of the central black holes will point along the filament. The researchers estimate that the probability that these alignments are simply the result of chance is less than 1%.

A correlation between the orientation of quasars and the structure they belong to is an important prediction of numerical models of evolution of our Universe. Our data provide the first observational confirmation of this effect, on scales much larger that what had been observed to date for normal galaxies,” adds Dominique Sluse of the Argelander-Institut für Astronomie in Bonn, Germany and University of Liège.

The team could not see the rotation axes or the jets of the quasars directly. Instead they measured the polarisation of the light from each quasar and, for 19 of them, found a significantly polarised signal. The direction of this polarisation, combined with other information, could be used to deduce the angle of the accretion disc and hence the direction of the spin axis of the quasar.

The alignments in the new data, on scales even bigger than current predictions from simulations, may be a hint that there is a missing ingredient in our current models of the cosmos,” concludes Dominique Sluse.

More information

This research was presented in a paper entitled “Alignment of quasar polarizations with large-scale structures“, by D. Hutsemékers et al., to appear in the journal Astronomy & Astrophysics on 19 November 2014.

The team is composed of D. Hutsemékers (Institut d’Astrophysique et de Géophysique, Université de Liège, Liège, Belgium), L. Braibant (Liège), V. Pelgrims (Liège) and D. Sluse (Argelander-Institut für Astronomie, Bonn, Germany; Liège).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Source: ESO