Tag Archives: electrical

New kind of “tandem” solar cell developed: MIT Research

Researchers combine two types of photovoltaic material to make a cell that harnesses more sunlight.

By David Chandler


 

CAMBRIDGE, Mass–Researchers at MIT and Stanford University have developed a new kind of solar cell that combines two different layers of sunlight-absorbing material in order to harvest a broader range of the sun’s energy. The development could lead to photovoltaic cells that are more efficient than those currently used in solar-power installations, the researchers say.

The new cell uses a layer of silicon — which forms the basis for most of today’s solar panels — but adds a semi-transparent layer of a material called perovskite, which can absorb higher-energy particles of light. Unlike an earlier “tandem” solar cell reported by members of the same team earlier this year — in which the two layers were physically stacked, but each had its own separate electrical connections — the new version has both layers connected together as a single device that needs only one control circuit.

The new findings are reported in the journal Applied Physics Letters by MIT graduate student Jonathan Mailoa; associate professor of mechanical engineering Tonio Buonassisi; Colin Bailie and Michael McGehee at Stanford; and four others.

“Different layers absorb different portions of the sunlight,” Mailoa explains. In the earlier tandem solar cell, the two layers of photovoltaic material could be operated independently of each other and required their own wiring and control circuits, allowing each cell to be tuned independently for optimal performance.

By contrast, the new combined version should be much simpler to make and install, Mailoa says. “It has advantages in terms of simplicity, because it looks and operates just like a single silicon cell,” he says, with only a single electrical control circuit needed.

One tradeoff is that the current produced is limited by the capacity of the lesser of the two layers. Electrical current, Buonassisi explains, can be thought of as analogous to the volume of water passing through a pipe, which is limited by the diameter of the pipe: If you connect two lengths of pipe of different diameters, one after the other, “the amount of water is limited by the narrowest pipe,” he says. Combining two solar cell layers in series has the same limiting effect on current.

To address that limitation, the team aims to match the current output of the two layers as precisely as possible. In this proof-of-concept solar cell, this means the total power output is about the same as that of conventional solar cells; the team is now working to optimize that output.

Perovskites have been studied for potential electronic uses including solar cells, but this is the first time they have been successfully paired with silicon cells in this configuration, a feat that posed numerous technical challenges. Now the team is focusing on increasing the power efficiency — the percentage of sunlight’s energy that gets converted to electricity — that is possible from the combined cell. In this initial version, the efficiency is 13.7 percent, but the researchers say they have identified low-cost ways of improving this to about 30 percent — a substantial improvement over today’s commercial silicon-based solar cells — and they say this technology could ultimately achieve a power efficiency of more than 35 percent.

They will also explore how to easily manufacture the new type of device, but Buonassisi says that should be relatively straightforward, since the materials lend themselves to being made through methods very similar to conventional silicon-cell manufacturing.

One hurdle is making the material durable enough to be commercially viable: The perovskite material degrades quickly in open air, so it either needs to be modified to improve its inherent durability or encapsulated to prevent exposure to air — without adding significantly to manufacturing costs and without degrading performance.

This exact formulation may not turn out to be the most advantageous for better solar cells, Buonassisi says, but is one of several pathways worth exploring. “Our job at this point is to provide options to the world,” he says. “The market will select among them.”

The research team also included Eric Johlin PhD ’14 and postdoc Austin Akey at MIT, and Eric Hoke and William Nguyen of Stanford. It was supported by the Bay Area Photovoltaic Consortium and the U.S. Department of Energy.

Source: News Office

Teaching programming to preschoolers: MIT Research

System that lets children program a robot using stickers embodies new theories about programming languages.

By Larry Hardesty


Researchers at the MIT Media Laboratory are developing a system that enables young children to program interactive robots by affixing stickers to laminated sheets of paper.

Not only could the system introduce children to programming principles, but it could also serve as a research tool, to help determine which computational concepts children can grasp at what ages, and how interactive robots can best be integrated into educational curricula.

Last week, at the Association for Computing Machinery and Institute of Electrical and Electronics Engineers’ International Conference on Human-Robot Interaction, the researchers presented the results of an initial study of the system, which investigated its use by children ages 4 to 8.

“We did not want to put this in the digital world but rather in the tangible world,” says Michal Gordon, a postdoc in media arts and sciences and lead author on the new paper. “It’s a sandbox for exploring computational concepts, but it’s a sandbox that comes to the children’s world.”

In their study, the MIT researchers used an interactive robot called Dragonbot, developed by the Personal Robots Group at the Media Lab, which is led by associate professor of media arts and sciences Cynthia Breazeal. Dragonbot has audio and visual sensors, a speech synthesizer, a range of expressive gestures, and a video screen for a face that can assume a variety of expressions. The programs that children created dictated how Dragonbot would react to stimuli.

“It’s programming in the context of relational interactions with the robot,” says Edith Ackermann, a developmental psychologist and visiting professor in the Personal Robots Group, who with Gordon and Breazeal is a co-author on the new paper. “This is what children do — they’re learning about social relations. So taking this expression of computational principles to the social world is very appropriate.”

Lessons that stick

The root components of the programming system are triangular and circular stickers — which represent stimuli and responses, respectively — and arrow stickers, which represent relationships between them. Children can first create computational “templates” by affixing triangles, circles, and arrows to sheets of laminated paper. They then fill in the details with stickers that represent particular stimuli — like thumbs up or down — and responses — like the narrowing or widening of Dragonbot’s eyes. There are also blank stickers on which older children can write their own verbal cues and responses.

Researchers in the Personal Robotics Group are developing a computer vision system that will enable children to convey new programs to Dragonbot simply by holding pages of stickers up to its camera. But for the purposes of the new study, the system’s performance had to be perfectly reliable, so one of the researchers would manually enter the stimulus-and-response sequences devised by the children, using a tablet computer with a touch-screen interface that featured icons depicting all the available options.

To introduce a new subject to the system, the researchers would ask him or her to issue an individual command, by attaching a single response sticker to a small laminated sheet. When presented with the sheet, Dragonbot would execute the command. But when it’s presented with a program, it instead nods its head and says, “I’ve got it.” Thereafter, it will execute the specified chain of responses whenever it receives the corresponding stimulus.

Even the youngest subjects were able to distinguish between individual commands and programs, and interviews after their sessions suggested that they understood that programs, unlike commands, modified the internal state of the robot. The researchers plan additional studies to determine the extent of their understanding.

Paradigm shift

The sticker system is, in fact, designed to encourage a new way of thinking about programming, one that may be more consistent with how computation is done in the 21st century.

“The systems we’re programming today are not sequential, as they were 20 or 30 years back,” Gordon says. “A system has many inputs coming in, complex state, and many outputs.” A cellphone, for instance, might be monitoring incoming transmissions over both Wi-Fi and the cellular network while playing back a video, transmitting the audio over Bluetooth, and running a timer that’s set to go off when the rice on the stove has finished cooking.

As a graduate student in computer science at the Weizmann Institute of Science in Israel, Gordon explains, she worked with her advisor, David Harel, on a new programming paradigm called scenario-based programming. “The idea is to describe your code in little scenarios, and the engine in the back connects them,” she explains. “You could think of it as rules, with triggers and actions.” Gordon and her colleagues’ new system could be used to introduce children to the principles of conventional, sequential programming. But it’s well adapted to scenario-based programming.

“It’s actually how we think about how programs are written before we try to integrate it into a whole programming artifact,” she says. “So I was thinking, ‘Why not try it earlier?’”

Source : MIT News Office


In the researchers' new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment.

Illustration: Jose-Luis Olivares/MIT

Quantum sensor’s advantages survive entanglement breakdown

Preserving the fragile quantum property known as entanglement isn’t necessary to reap benefits.

By Larry Hardesty 


CAMBRIDGE, Mass. – The extraordinary promise of quantum information processing — solving problems that classical computers can’t, perfectly secure communication — depends on a phenomenon called “entanglement,” in which the physical states of different quantum particles become interrelated. But entanglement is very fragile, and the difficulty of preserving it is a major obstacle to developing practical quantum information systems.

In a series of papers since 2008, members of the Optical and Quantum Communications Group at MIT’s Research Laboratory of Electronics have argued that optical systems that use entangled light can outperform classical optical systems — even when the entanglement breaks down.

Two years ago, they showed that systems that begin with entangled light could offer much more efficient means of securing optical communications. And now, in a paper appearing in Physical Review Letters, they demonstrate that entanglement can also improve the performance of optical sensors, even when it doesn’t survive light’s interaction with the environment.

In the researchers' new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment. Illustration: Jose-Luis Olivares/MIT
In the researchers’ new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment.
Illustration Credit: Jose-Luis Olivares/MIT

“That is something that has been missing in the understanding that a lot of people have in this field,” says senior research scientist Franco Wong, one of the paper’s co-authors and, together with Jeffrey Shapiro, the Julius A. Stratton Professor of Electrical Engineering, co-director of the Optical and Quantum Communications Group. “They feel that if unavoidable loss and noise make the light being measured look completely classical, then there’s no benefit to starting out with something quantum. Because how can it help? And what this experiment shows is that yes, it can still help.”

Phased in

Entanglement means that the physical state of one particle constrains the possible states of another. Electrons, for instance, have a property called spin, which describes their magnetic orientation. If two electrons are orbiting an atom’s nucleus at the same distance, they must have opposite spins. This spin entanglement can persist even if the electrons leave the atom’s orbit, but interactions with the environment break it down quickly.

In the MIT researchers’ system, two beams of light are entangled, and one of them is stored locally — racing through an optical fiber — while the other is projected into the environment. When light from the projected beam — the “probe” — is reflected back, it carries information about the objects it has encountered. But this light is also corrupted by the environmental influences that engineers call “noise.” Recombining it with the locally stored beam helps suppress the noise, recovering the information.

The local beam is useful for noise suppression because its phase is correlated with that of the probe. If you think of light as a wave, with regular crests and troughs, two beams are in phase if their crests and troughs coincide. If the crests of one are aligned with the troughs of the other, their phases are anti-correlated.

But light can also be thought of as consisting of particles, or photons. And at the particle level, phase is a murkier concept.

“Classically, you can prepare beams that are completely opposite in phase, but this is only a valid concept on average,” says Zheshen Zhang, a postdoc in the Optical and Quantum Communications Group and first author on the new paper. “On average, they’re opposite in phase, but quantum mechanics does not allow you to precisely measure the phase of each individual photon.”

Improving the odds

Instead, quantum mechanics interprets phase statistically. Given particular measurements of two photons, from two separate beams of light, there’s some probability that the phases of the beams are correlated. The more photons you measure, the greater your certainty that the beams are either correlated or not. With entangled beams, that certainty increases much more rapidly than it does with classical beams.

When a probe beam interacts with the environment, the noise it accumulates also increases the uncertainty of the ensuing phase measurements. But that’s as true of classical beams as it is of entangled beams. Because entangled beams start out with stronger correlations, even when noise causes them to fall back within classical limits, they still fare better than classical beams do under the same circumstances.

“Going out to the target and reflecting and then coming back from the target attenuates the correlation between the probe and the reference beam by the same factor, regardless of whether you started out at the quantum limit or started out at the classical limit,” Shapiro says. “If you started with the quantum case that’s so many times bigger than the classical case, that relative advantage stays the same, even as both beams become classical due to the loss and the noise.”

In experiments that compared optical systems that used entangled light and classical light, the researchers found that the entangled-light systems increased the signal-to-noise ratio — a measure of how much information can be recaptured from the reflected probe — by 20 percent. That accorded very well with their theoretical predictions.

But the theory also predicts that improvements in the quality of the optical equipment used in the experiment could double or perhaps even quadruple the signal-to-noise ratio. Since detection error declines exponentially with the signal-to-noise ratio, that could translate to a million-fold increase in sensitivity.

Source: MIT News Office

Recommendation theory

Model for evaluating product-recommendation algorithms suggests that trial and error get it right.

By Larry Hardesty

Devavrat Shah’s group at MIT’s Laboratory for Information and Decision Systems (LIDS) specializes in analyzing how social networks process information. In 2012, the group demonstrated algorithms that could predict what topics would trend on Twitter up to five hours in advance; this year, they used the same framework to predict fluctuations in the prices of the online currency known as Bitcoin.

Next month, at the Conference on Neural Information Processing Systems, they’ll present a paper that applies their model to the recommendation engines that are familiar from websites like Amazon and Netflix — with surprising results.

“Our interest was, we have a nice model for understanding data-processing from social data,” says Shah, the Jamieson Associate Professor of Electrical Engineering and Computer Science. “It makes sense in terms of how people make decisions, exhibit preferences, or take actions. So let’s go and exploit it and design a better, simple, basic recommendation algorithm, and it will be something very different. But it turns out that under that model, the standard recommendation algorithm is the right thing to do.”

The standard algorithm is known as “collaborative filtering.” To get a sense of how it works, imagine a movie-streaming service that lets users rate movies they’ve seen. To generate recommendations specific to you, the algorithm would first assign the other users similarity scores based on the degree to which their ratings overlap with yours. Then, to predict your response to a particular movie, it would aggregate the ratings the movie received from other users, weighted according to similarity scores.

To simplify their analysis, Shah and his collaborators — Guy Bresler, a postdoc in LIDS, and George Chen, a graduate student in MIT’s Department of Electrical Engineering and Computer Science (EECS) who is co-advised by Shah and EECS associate professor Polina Golland — assumed that the ratings system had two values, thumbs-up or thumbs-down. The taste of every user could thus be described, with perfect accuracy, by a string of ones and zeroes, where the position in the string corresponds to a particular movie and the number at that location indicates the rating.

Birds of a feather

The MIT researchers’ model assumes that large groups of such strings can be clustered together, and that those clusters can be described probabilistically. Rather than ones and zeroes at each location in the string, a probabilistic cluster model would feature probabilities: an 80 percent chance that the members of the cluster will like movie “A,” a 20 percent chance that they’ll like movie “B,” and so on.

The question is how many such clusters are required to characterize a population. If half the people who like “Die Hard” also like “Shakespeare in Love,” but the other half hate it, then ideally, you’d like to split “Die Hard” fans into two clusters. Otherwise, you’d lose correlations between their preferences that could be predictively useful. On the other hand, the more clusters you have, the more ratings you need to determine which of them a given user belongs to. Reliable prediction from limited data becomes impossible.

In their new paper, the MIT researchers show that so long as the number of clusters required to describe the variation in a population is low, collaborative filtering yields nearly optimal predictions. But in practice, how low is that number?

To answer that question, the researchers examined data on 10 million users of a movie-streaming site and identified 200 who had rated the same 500 movies. They found that, in fact, just five clusters — five probabilistic models — were enough to account for most of the variation in the population.

Missing links

While the researchers’ model corroborates the effectiveness of collaborative filtering, it also suggests ways to improve it. In general, the more information a collaborative-filtering algorithm has about users’ preferences, the more accurate its predictions will be. But not all additional information is created equal. If a user likes “The Godfather,” the information that he also likes “The Godfather: Part II” will probably have less predictive power than the information that he also likes “The Notebook.”

Using their analytic framework, the LIDS researchers show how to select a small number of products that carry a disproportionate amount of information about users’ tastes. If the service provider recommended those products to all its customers, then, based on the resulting ratings, it could much more efficiently sort them into probability clusters, which should improve the quality of its recommendations.

Sujay Sanghavi, an associate professor of electrical and computer engineering at the University of Texas at Austin, considers this the most interesting aspect of the research. “If you do some kind of collaborative filtering, two things are happening,” he says. “I’m getting value from it as a user, but other people are getting value, too. Potentially, there is a trade-off between these things. If there’s a popular movie, you can easily show that I’ll like it, but it won’t improve the recommendations for other people.”

That trade-off, Sanghavi says, “has been looked at in an empirical context, but there’s been nothing that’s principled. To me, what is appealing about this paper is that they have a principled look at this issue, which no other work has done. They’ve found a new kind of problem. They are looking at a new issue.”

Source : MIT News


The complete electronic sensor, which weighs only 1.8 grams, is imbedded in the cube, and a 3D antenna is positioned around it. Photo credit:  Muhammad Fahad Faroouqi

KAUST research pioneers smart sensors for better and safer living

Atif Shamim and Christian Claudel, KAUST Assistant Professors of Electrical Engineering, work together on creating wireless sensor networks for “smart cities.” It is technology Prof. Shamim describes as “game changing…It will change the way we do many things in our lives, moving us towards smarter living,” he said.

In the “smart cities” of the future, electronic devices and objects will be “smart,” with objects containing sensors that communicate with each other, fixed network nodes and central servers. These sensors are connected through the Internet of things (IOT), which enables them to share information. Intelligent systems at the central servers are then used to analyze and process the data from the sensors.

The complete electronic sensor, which weighs only 1.8 grams, is imbedded in the cube, and a 3D antenna is positioned around it. Photo credit:  Muhammad Fahad Faroouqi
The complete electronic sensor, which weighs only 1.8 grams, is imbedded in the cube, and a 3D antenna is positioned around it. Photo credit: Muhammad Fahad Faroouqi

“The critical component for these processes is low-cost wireless sensing modules,” explained Prof. Shamim. “Fixed sensor nodes are useful, but for these you need a lot of infrastructure, such as towers and assemblies. Our idea is that you would have some fixed sensors, but you would disperse many small, mobile sensors that communicate wirelessly to the fixed sensors, which then communicate all the received information to a central station for analysis.”

COLLABORATING FOR SMART PROGRESS

The use of small, mobile sensors reduces the cost of the infrastructure tremendously, noted Prof. Shamim, and also enables information to be gathered from remote locations where it is difficult or impossible to mount fixed sensors, such as in forests or deserts.

Together, the research groups of Prof. Shamim and Prof. Claudel combined their respective talents and expertise to make progress in using wireless sensors for flood monitoring. This issue is of high importance to Saudi Arabia and cities such as Jeddah, which saw a 2009 catastrophic flood claim the lives of hundreds and cause considerable property damage.

“Classical sensing solutions, such as fixed wireless sensor networks or satellite imagery, are too expensive or too inaccurate to detect floods – and in particular flash floods – well,” noted Prof. Claudel. “Instead, we tested the use of Unmanned Aerial Vehicles (UAVs) equipped with mobile, floatable, 3D printed microsensors and sensor delivery systems to sense and monitor flash flooding events.”

This new system of mobile, floatable sensing, called Lagrangian sensing, “is very promising for large scale sensing, or on-demand sensing, as it requires minimal infrastructure,” the researchers stated. Using this method, UAVs drop the small, disposable wireless sensors over an area to be monitored. The sensors float, so they are carried away by the water flow of the flood. As they move along in the water, they send signals to the UAVs. These signals map the extent of the flood, and this information is transmitted to a central, fixed station for processing. It can then be used to warn the public and other authorities about the extent of the flood.

“Prof. Claudel carries out the systems level design and implementation for the research project, and my group develops the actual physical sensors,” said Prof. Shamim. “In that way, I believe we are a very good fit for collaboration.”

Their collaboration produced a paper recently published in IEEE Transactions on Antennas & Propagation, entitled “An Inkjet-Printed Buoyant 3-D Lagrangian Sensor for Real-Time Flood Monitoring” (DOI: 10.1109/TAP.2014.2309957). KAUST has applied for patent protection for this and other related technologies.

DEVELOPING LOW-COST SOLUTIONS

One of the challenges Profs. Claudel and Shamim and their teams faced in the research work was designing the sensors. “We wanted to make them low-cost so they are basically disposable,” explained Prof. Shamim. “We use inkjet printers to print electronics on paper and plastics, but in this case we used paper, as it is lightweight, 1/10th the cost of plastic, and is very suitable for inkjet printing. In addition, it is biodegradable and comes from a renewable resource.”

The researchers produced a small paper cube with a size of 13 mm x 13 mm x 13 mm. The complete electronic sensor, which weighs only 1.8 grams, is imbedded in the cube, and a 3D antenna is positioned around it, enabling the cube to give a signal in any direction it is moving (or floating).

“Because we were working on a flood monitoring application, we had to optimize the sensor to work in water as well as in air,” Prof. Shamim noted. “We were skeptical about its performance in water, so we sealed it with a special glue. We then produced a cube that is very small, lightweight, floats in water, and is electrically sealed. It works very well in water and radiates up to 50 meters in all directions. The performance was better than we expected.”

The technology has many other possible applications: “You could integrate sensors for ammonia, sulfur, carbon monoxide, humidity, or temperature into the cube,” said Prof. Shamim. “This would allow for detection of poisonous gases and other environmental conditions, which would be especially helpful in industrial settings and in remote locations, such as during forest fire events.”

Profs. Shamim and Claudel want to integrate their low-cost, printable, and disposable microsensor technology into the day-to-day lives of everyday people. Not only would the technology enable greater safety for individuals during catastrophic events such as floods, but it could also assist in locating cars in busy parking lots, tracking expired foods in supermarkets, and in creating smart houses, where household appliances and electronic lock systems “talk” to each other to make sure they are in proper working order.

“I believe this technology will change the way people live, shop, and monitor things,” said Prof. Shamim. “We will have better living, from our homes to our offices to our industries – and that is a benefit for all.”

Sourse: KAUST

The NOMADD technology represents KAUST's first royalty-bearing license agreement. Credit: KAUST News

Innovation in the desert! KAUST’s NOMADD sets sights on solar energy future

The NOMADD technology represents KAUST’s first royalty-bearing license agreement.

By Meres J. Weche


The United Nations estimates the Saudi population will grow to 45 million by 2050; and as the population increases, domestic energy demand is anticipated to double by 2030. In recognition of the growing importance of developing sustainable and renewable energy sources for the Kingdom, the Saudi government has established the ambitious goal of generating a third of the country’s electricity sources (41,000 megawatts) through solar power by 2032. Towards this goal, the King Abdullah City for Atomic and Renewable Energy (KACARE) aims to construct a $109 billion solar industry in Saudi Arabia, which would represent about 20,000 football fields worth of solar panels.

“We hope to be the industry standard solution to clean all those panels,” said Georg Eitelhuber, Founder and Chief Executive Officer of NOMADD. The startup company, developed three years ago at KAUST and originally supported and funded by theEntrepreneurship Center and the Seed Fund program, offers a waterless and remotely operated system to clean solar panels. The acronym NOMADD stands for NO-water Mechanical Automated Dusting Device.

The NOMADD technology represents KAUST's first royalty-bearing license agreement. Credit: KAUST News
The NOMADD technology represents KAUST’s first royalty-bearing license agreement. Credit: KAUST News

Describing the challenges facing Saudi Arabia’s burgeoning solar energy industry, the NOMADD founder says: “The big challenge, is dust. Desert winds pick up the dust and push it onto the solar panels, all day every day. Sometimes you can have dust storms which put so much dust on the solar panel surface, you can lose 60% of your output in a single day.” Actually, solar panels lose between 0.4-0.8% of their efficiency per day just from desert sand and dust.

A mechanical engineer by training, Eitelhuber was working as a physics teacher at the KAUST School when he started experimenting with Lego blocks and paper to find a solution to clean solar panels exposed to the rough dusty environment of Saudi Arabia. His innovation has since been recognized with the 2014 Solar Pioneer Award and he has been working on further testing and developing the solution with world-leading companies in solar energy such as First Solar Inc. and SunPower Corp.

Eitelhuber is grateful for the backing of KAUST, with all of its resources, in assisting inventors like himself. As the NOMADD team works with various industrial testing partners on improving the technology, KAUST Tech Transfer is there to maintain control of patentable technology which may emerge in the process. A milestone was achieved last month when KAUST signed its first royalty-bearing license agreement for the NOMADD desert solar solution system.

A Continuous Drive for Improvement

Demonstrating the newly devised fifth version of the NOMADD system in its three years of development, Georg Eitelhuber explains that it’s now “70% lighter than previous versions and uses less than half of the power.” In addition to that, it’s much cheaper to manufacture.

“Every time we do a new version it’s simpler, cheaper and faster,” he adds. For example, the rail system supporting the brushes cleaning the solar panels from top to bottom is not only lighter and cheaper but it also now just clips on – whereas previous versions required many nuts and bolts. The mounting system moreover features an inbuilt self-adjustment process tailored to determine the optimal gravity-adjusted angle as the solar panels are cleaned.

It’s important for the cleaning system to be both economically and functionally optimized since some panel rows can be 400 meters long. “That’s a lot of rail,” said Eitelhuber.” “The old version had literally hundreds of nuts and bolts, little fasteners and washers and it worked great but it also weighted as much as a tank.”

Compared to some earlier models, which had around 120-odd manufacturing pieces, the latest NOMADD system has narrowed it down to 10 to 15 pieces. This means that it’s now easier to manufacture and assemble. “The key thing is that it has to be cheaper than sending out a worker with a squeegee and more economical than anything else in the market,” he adds.

The achieved objective has been to make NOMADD desert-proof – as the arid environment causes things to break down at higher frequencies. The device is basically machined aluminum and stainless steel.

It’s also noteworthy that the brushes used to non-abrasively clean the solar panels can easily be slid out and replaced. So it would take someone around five minutes to change all the brushes.

In addition, one of the major advantages of the NOMADD system is that it’s remotely operated. The cleaning functions can be monitored and operated online from around the world.

A Saudi-Specific Innovation with a Global Footprint

“The advantage that we’ve got is that we’ve basically been three years in development and we’ve been developing this solution for the desert while being in the desert. We’ve got a real understanding of the issues involved in cleaning solar panels in the desert,” said Georg Eitelhuber.

Unlike some other solar panel cleaning solutions from North American and European companies, designed for mild climates, that use water and require manual labor, the NOMADD system really has an edge by being a waterless model ideally suited for these arid conditions. “We understand that having someone standing outside at 45 degrees Celsius cleaning solar panels eight hours a day isn’t feasible,” he adds.

As they keep an eye out for the competition, the NOMADD team is confident that, once they make it through the final development process, they will have every chance of being a huge commercial success.

KAUST’s director of New Ventures and Entrepreneurship, Gordon McConnell, says NOMADD’s local presence in the Kingdom will help contribute in building a knowledge-based economy in Saudi Arabia. “The local incorporation is not just of bureaucratic significance, but will now enable NOMADD to develop its business which in turn will help to create high level jobs in sales, marketing and technical areas, while also offering an opportunity to build up local manufacturing capacity and it will make it easier for fund raising within the Kingdom,” said McConnell.

The NOMADD project has greatly benefited from the collaborative efforts of several key team members such as Guodong Li, Chief Electrical Engineer, and Elizabeth Cassell, the project’s chief Administrator, both from the KAUST Solar Center; as well as Head Mechanical Design Engineer Steven Schneider who has been instrumental in producing technical drawings for manufacturing. Andres Pablo, a Ph.D. student, and Razeen Stoffberg, one of Georg’s ex students front he KAUST school, have been assisting with technical setups and product testing and evaluation.

Also, as much of the manufacturing work is done in Asia, the NOMADD team has set up an office in Singapore, headed by Chief Development Officer Cliff Barrett. As a next step, the team has been actively recruiting a new CEO to help the project achieve critical mass and reach their ambitious future milestones.

“Thanks to some great mentorship from the KAUST New Ventures and Entrepreneurshipteam, I’ve done my best as a CEO but I’m an engineer and an inventor by nature,” said Georg Eitelhuber. “It’s been one of my dreams from the very beginning to try and start something which will have a net positive environmental and social impact.”

Source: KAUST News