Tag Archives: electron

Shown here is "event zero," the first detection of a trapped electron in the MIT physicists' instrument. The color indicates the electron's detected power as a function of frequency and time. The sudden “jumps” in frequency indicate an electron collision with the residual hydrogen gas in the cell.

Courtesy of the researchers

Source: MIT News

New tabletop detector “sees” single electrons

Magnet-based setup may help detect the elusive mass of neutrinos.

Jennifer Chu

MIT physicists have developed a new tabletop particle detector that is able to identify single electrons in a radioactive gas.
As the gas decays and gives off electrons, the detector uses a magnet to trap them in a magnetic bottle. A radio antenna then picks up very weak signals emitted by the electrons, which can be used to map the electrons’ precise activity over several milliseconds.

Shown here is "event zero," the first detection of a trapped electron in the MIT physicists' instrument. The color indicates the electron's detected power as a function of frequency and time. The sudden “jumps” in frequency indicate an electron collision with the residual hydrogen gas in the cell. Courtesy of the researchers Source: MIT News
Shown here is “event zero,” the first detection of a trapped electron in the MIT physicists’ instrument. The color indicates the electron’s detected power as a function of frequency and time. The sudden “jumps” in frequency indicate an electron collision with the residual hydrogen gas in the cell.
Courtesy of the researchers
Source: MIT News

The team worked with researchers at Pacific Northwest National Laboratory, the University of Washington, the University of California at Santa Barbara (UCSB), and elsewhere to record the activity of more than 100,000 individual electrons in krypton gas.
The majority of electrons observed behaved in a characteristic pattern: As the radioactive krypton gas decays, it emits electrons that vibrate at a baseline frequency before petering out; this frequency spikes again whenever an electron hits an atom of radioactive gas. As an electron ping-pongs against multiple atoms in the detector, its energy appears to jump in a step-like pattern.
“We can literally image the frequency of the electron, and we see this electron suddenly pop into our radio antenna,” says Joe Formaggio, an associate professor of physics at MIT. “Over time, the frequency changes, and actually chirps up. So these electrons are chirping in radio waves.”
Formaggio says the group’s results, published in Physical Review Letters, are a big step toward a more elusive goal: measuring the mass of a neutrino.

A ghostly particle
Neutrinos are among the more mysterious elementary particles in the universe: Billions of them pass through every cell of our bodies each second, and yet these ghostly particles are incredibly difficult to detect, as they don’t appear to interact with ordinary matter. Scientists have set theoretical limits on neutrino mass, but researchers have yet to precisely detect it.
“We have [the mass] cornered, but haven’t measured it yet,” Formaggio says. “The name of the game is to measure the energy of an electron — that’s your signature that tells you about the neutrino.”
As Formaggio explains it, when a radioactive atom such as tritium decays, it turns into an isotope of helium and, in the process, also releases an electron and a neutrino. The energy of all particles released adds up to the original energy of the parent neutron. Measuring the energy of the electron, therefore, can illuminate the energy — and consequently, the mass — of the neutrino.
Scientists agree that tritium, a radioactive isotope of hydrogen, is key to obtaining a precise measurement: As a gas, tritium decays at such a rate that scientists can relatively easily observe its electron byproducts.
Researchers in Karlsruhe, Germany, hope to measure electrons in tritium using a massive spectrometer as part of an experiment named KATRIN (Karlsruhe Tritium Neutrino Experiment). Electrons, produced from the decay of tritium, pass through the spectrometer, which filters them according to their different energy levels. The experiment, which is just getting under way, may obtain measurements of single electrons, but at a cost.
“In KATRIN, the electrons are detected in a silicon detector, which means the electrons smash into the crystal, and a lot of random things happen, essentially destroying the electrons,” says Daniel Furse, a graduate student in physics, and a co-author on the paper. “We still want to measure the energy of electrons, but we do it in a nondestructive way.”
The group’s setup has an additional advantage: size. The detector essentially fits on a tabletop, and the space in which electrons are detected is smaller than a postage stamp. In contrast, KATRIN’s spectrometer, when delivered to Karlsruhe, barely fit through the city’s streets.
Tuning in
Furse and Formaggio’s detector — an experiment called “Project 8” — is based on a decades-old phenomenon known as cyclotron radiation, in which charged particles such as electrons emit radio waves in a magnetic field. It turns out electrons emit this radiation at a frequency similar to that of military radio communications.
“It’s the same frequency that the military uses — 26 gigahertz,” Formaggio says. “And it turns out the baseline frequency changes very slightly if the electron has energy. So we said, ‘Why not look at the radiation [electrons] emit directly?’”
Formaggio and former postdoc Benjamin Monreal, now an assistant professor of physics at UCSB, reasoned that if they could tune into this baseline frequency, they could catch electrons as they shot out of a decaying radioactive gas, and measure their energy in a magnetic field.
“If you could measure the frequency of this radio signal, you could measure the energy potentially much more accurately than you can with any other method,” Furse says. “The problem is, you’re looking at this really weak signal over a very short amount of time, and it’s tough to see, which is why no one has ever done it before.”
It took five years of fits and starts before the group was finally able to build an accurate detector. Once the researchers turned the detector on, they were able to record individual electrons within the first 100 milliseconds of the experiment — although the analysis took a bit longer.
“Our software was so slow at processing things that we could tell funny things were happening because, all of a sudden, our file size became larger, as these things started appearing,” Formaggio recalls.
He says the precision of the measurements obtained so far in krypton gas has encouraged the team to move on to tritium — a goal Formaggio says may be attainable in the next year or two — and pave a path toward measuring the mass of the neutrino.
Steven Elliott, a technical staff member at Los Alamos National Laboratory, says the group’s new detector “represents a very significant result.” In order to use the detector to measure the mass of a neutrino, Elliott adds, the group will have to make multiple improvements, including developing a bigger cell to contain a larger amount of tritium.
“This was the first step, albeit a very important step, along the way to building a next-generation experiment,” says Elliott, who did not contribute to the research. “As a result, the neutrino community is very impressed with the concept and execution of this experiment.”
This research was funded in part by the Department of Energy and the National Science Foundation.

Quantum computer as detector shows space is not squeezed

 Robert Sanders


Ever since Einstein proposed his special theory of relativity in 1905, physics and cosmology have been based on the assumption that space looks the same in all directions – that it’s not squeezed in one direction relative to another.

A new experiment by UC Berkeley physicists used partially entangled atoms — identical to the qubits in a quantum computer — to demonstrate more precisely than ever before that this is true, to one part in a billion billion.

The classic experiment that inspired Albert Einstein was performed in Cleveland by Albert Michelson and Edward Morley in 1887 and disproved the existence of an “ether” permeating space through which light was thought to move like a wave through water. What it also proved, said Hartmut Häffner, a UC Berkeley assistant professor of physics, is that space is isotropic and that light travels at the same speed up, down and sideways.

“Michelson and Morley proved that space is not squeezed,” Häffner said. “This isotropy is fundamental to all physics, including the Standard Model of physics. If you take away isotropy, the whole Standard Model will collapse. That is why people are interested in testing this.”

The Standard Model of particle physics describes how all fundamental particles interact, and requires that all particles and fields be invariant under Lorentz transformations, and in particular that they behave the same no matter what direction they move.

Häffner and his team conducted an experiment analogous to the Michelson-Morley experiment, but with electrons instead of photons of light. In a vacuum chamber he and his colleagues isolated two calcium ions, partially entangled them as in a quantum computer, and then monitored the electron energies in the ions as Earth rotated over 24 hours.

As the Earth rotates every 24 hours, the orientation of the ions in the quantum computer/detector changes with respect to the Sun’s rest frame. If space were squeezed in one direction and not another, the energies of the electrons in the ions would have shifted with a 12-hour period. (Hartmut Haeffner image)
As the Earth rotates every 24 hours, the orientation of the ions in the quantum computer/detector changes with respect to the Sun’s rest frame. If space were squeezed in one direction and not another, the energies of the electrons in the ions would have shifted with a 12-hour period. (Hartmut Haeffner image)

If space were squeezed in one or more directions, the energy of the electrons would change with a 12-hour period. It didn’t, showing that space is in fact isotropic to one part in a billion billion (1018), 100 times better than previous experiments involving electrons, and five times better than experiments like Michelson and Morley’s that used light.

The results disprove at least one theory that extends the Standard Model by assuming some anisotropy of space, he said.

Häffner and his colleagues, including former graduate student Thaned Pruttivarasin, now at the Quantum Metrology Laboratory in Saitama, Japan, will report their findings in the Jan. 29 issue of the journal Nature.

Entangled qubits

Häffner came up with the idea of using entangled ions to test the isotropy of space while building quantum computers, which involve using ionized atoms as quantum bits, or qubits, entangling their electron wave functions, and forcing them to evolve to do calculations not possible with today’s digital computers. It occurred to him that two entangled qubits could serve as sensitive detectors of slight disturbances in space.

“I wanted to do the experiment because I thought it was elegant and that it would be a cool thing to apply our quantum computers to a completely different field of physics,” he said. “But I didn’t think we would be competitive with experiments being performed by people working in this field. That was completely out of the blue.”

He hopes to make more sensitive quantum computer detectors using other ions, such as ytterbium, to gain another 10,000-fold increase in the precision measurement of Lorentz symmetry. He is also exploring with colleagues future experiments to detect the spatial distortions caused by the effects of dark matter particles, which are a complete mystery despite comprising 27 percent of the mass of the universe.

“For the first time we have used tools from quantum information to perform a test of fundamental symmetries, that is, we engineered a quantum state which is immune to the prevalent noise but sensitive to the Lorentz-violating effects,” Häffner said. “We were surprised the experiment just worked, and now we have a fantastic new method at hand which can be used to make very precise measurements of perturbations of space.”

Other co-authors are UC Berkeley graduate student Michael Ramm, former UC Berkeley postdoc Michael Hohensee of Lawrence Livermore National Laboratory, and colleagues from the University of Delaware and Maryland and institutions in Russia. The work was supported by the National Science Foundation.

Source: UC Berkeley

This artist’s impression depicts the formation of a galaxy cluster in the early Universe. The galaxies are vigorously forming new stars and interacting with each other. Such a scene closely resembles the Spiderweb Galaxy (formally known as MRC 1138-262) and its surroundings, which is one of the best-studied protoclusters.


ESO/M. Kornmesser

Syracuse Physicists Closer to Understanding Balance of Matter, Antimatter

Physicists in the College of Arts and Sciences have made important discoveries regarding Bs meson particles—something that may explain why the universe contains more matter than antimatter. Distinguished Professor Sheldon Stone and his colleagues recently announced their findings at a workshop at CERN in Geneva, Switzerland. Titled “Implications of LHCb Measurements and Their Future Prospects,” the workshop enabled him and other members of the Large Hadron Collider beauty (LHCb) Collaboration to share recent data results. The LHCb Collaboration is a multinational experiment that seeks to explore what happened after the Big Bang, causing matter to survive and flourish in the Universe. LHCb is an international experiment, based at CERN, involving more than 800 scientists and engineers from all over the world. At CERN, Stone heads up a team of 15 physicists from Syracuse. “Many international experiments are interested in the Bs meson because it oscillates between a matter particle and an antimatter particle,” says Stone, who heads up Syracuse’s High-Energy Physics Group. “Understanding its properties may shed light on charge-parity [CP] violation, which refers to the balance of matter and antimatter in the universe and is one of the biggest challenges of particle physics.” Scientists believe that, 14 billion years ago, energy coalesced to form equal quantities of matter and antimatter. As the universe cooled and expanded, its composition changed. Antimatter all but disappeared after the Big Bang (approximately 3.8 billion years ago), leaving behind matter to create everything from stars and galaxies to life on Earth. “Something must have happened to cause extra CP violation and, thus, form the universe as we know it,” Stone says. He thinks part of the answer lies in the Bs meson, which contains an antiquark and a strange quark and is bound together by a strong interaction. (A quark is a hard, point-like object found inside a proton and neutron that forms the nucleus of an atom.) Enter CERN, a European research organization that operates the world’s largest particle physics laboratory. In Geneva, Stone and his research team—which includes Liming Zhang, a former Syracuse research associate who is now a professor at Tsinghua University in Beijing, China—have studied two landmark experiments that took place at Fermilab, a high-energy physics laboratory near Chicago, in 2009. The experiments involved the Collider Detector at Fermilab (CDF) and the DZero (D0), four-story detectors that were part of Fermilab’s now-defunct Tevatron, then one of the world’s highest-energy particle accelerators. “Results from D0 and CDF showed that the matter-antimatter oscillations of the Bs meson deviated from the standard model of physics, but the uncertainties of their results were too high to make any solid conclusions,” Stone says. He and Zhang had no choice but to devise a technique allowing for more precise measurements of Bs mesons. Their new result shows that the difference in oscillations between the Bs and anti-Bs meson is just as the standard model has predicted. Stone says the new measurement dramatically restricts the realms where new physics could be hiding, forcing physicists to expand their searches into other areas. “Everyone knows there is new physics. We just need to perform more sensitive analyses to sniff it out,” he adds.

Source: Syracuse University

Laser system

Physical constant is constant even in strong gravitational fields

An international team of physicists has shown that the mass ratio between protons and electrons is the same in weak and in very strong gravitational fields. Their study, which was partly funded by the FOM Foundation, is published online on 18 September 2014 in Physical Review Letters.

The idea that the laws of physics and its fundamental constants do not depend on local circumstances is called the equivalence principle. This principle is a cornerstone to Einstein’s theory of general relativity. To put the principle to the test, FOM physicists working at the LaserLaB at VU University Amsterdam determined whether one fundamental constant, the mass ratio between protons and electrons, depends on the strength of the gravitational field that the particles are in. Laser system

Laboratories on earth and in space 
The researchers compared the proton-electron mass ratio near the surface of a white dwarf star to the mass ratio in a laboratory on Earth. White dwarfs stars, which are in a late stage of their life cycle, have collapsed to less than one percent of their original size. The gravitational field at the surface of these stars is therefore much larger than that on earth, by a factor of 10,000. The physicists concluded that even these strong gravitational conditions, the proton-electron mass ratio is the same within a margin of 0.005 percent. In both cases, the proton mass is 1836.152672 times as big as the electron mass . 

Absorption spectra 
To reach their conclusion, the Dutch physicists collaborated with astronomers of the University of Leicester, the University of Cambridge and the Swinburne University of Technology in Melbourne. The team analysed absorption spectra of hydrogen molecules in white dwarf photospheres (the outer shell of a star from which light is radiated). The spectra were then compared to spectra obtained with a laser at LaserLaB in Amsterdam. 

Absorption spectra reveal which radiation frequencies are absorbed by a particle. A small deviation of the proton-electron mass ration would affect the structure of the molecule, and therefore the absorption spectrum as well. However, the comparison revealed that the spectra were very similar, which proves that the value of the proton-electron mass ratio is indeed independent of the strength of the gravitation field. 

FOM PhD student Julija Bagdonaite: “Previously, we confirmed the constancy of this fundamental constant on a cosmological time scale with the Very Large Telescope in Chile. Now we searched for a dependence on strong gravitational fields using the Hubble Space Telescope. Gradually we find that the fundamental constants seem to be rock-solid and eternal.”

Contact information Prof.dr. Wim Ubachs, LaserLaB VU University Amsterdam, +31 (0)20 598 79 48

Images The astronomical spectra were recorded with the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope. For a picture of the COS, please visit the NASA website.

Reference Limits on a Gravitational field Dependence of the Proton-to-Electron Mass Ratio from H2 in White Dwarf Stars, Physical Review Letters, 18 September 2014.
Paper on ArXiv.  

Source: FOM