Tag Archives: entanglement

In the researchers' new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment.

Illustration: Jose-Luis Olivares/MIT

Quantum sensor’s advantages survive entanglement breakdown

Preserving the fragile quantum property known as entanglement isn’t necessary to reap benefits.

By Larry Hardesty 


CAMBRIDGE, Mass. – The extraordinary promise of quantum information processing — solving problems that classical computers can’t, perfectly secure communication — depends on a phenomenon called “entanglement,” in which the physical states of different quantum particles become interrelated. But entanglement is very fragile, and the difficulty of preserving it is a major obstacle to developing practical quantum information systems.

In a series of papers since 2008, members of the Optical and Quantum Communications Group at MIT’s Research Laboratory of Electronics have argued that optical systems that use entangled light can outperform classical optical systems — even when the entanglement breaks down.

Two years ago, they showed that systems that begin with entangled light could offer much more efficient means of securing optical communications. And now, in a paper appearing in Physical Review Letters, they demonstrate that entanglement can also improve the performance of optical sensors, even when it doesn’t survive light’s interaction with the environment.

In the researchers' new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment. Illustration: Jose-Luis Olivares/MIT
In the researchers’ new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment.
Illustration Credit: Jose-Luis Olivares/MIT

“That is something that has been missing in the understanding that a lot of people have in this field,” says senior research scientist Franco Wong, one of the paper’s co-authors and, together with Jeffrey Shapiro, the Julius A. Stratton Professor of Electrical Engineering, co-director of the Optical and Quantum Communications Group. “They feel that if unavoidable loss and noise make the light being measured look completely classical, then there’s no benefit to starting out with something quantum. Because how can it help? And what this experiment shows is that yes, it can still help.”

Phased in

Entanglement means that the physical state of one particle constrains the possible states of another. Electrons, for instance, have a property called spin, which describes their magnetic orientation. If two electrons are orbiting an atom’s nucleus at the same distance, they must have opposite spins. This spin entanglement can persist even if the electrons leave the atom’s orbit, but interactions with the environment break it down quickly.

In the MIT researchers’ system, two beams of light are entangled, and one of them is stored locally — racing through an optical fiber — while the other is projected into the environment. When light from the projected beam — the “probe” — is reflected back, it carries information about the objects it has encountered. But this light is also corrupted by the environmental influences that engineers call “noise.” Recombining it with the locally stored beam helps suppress the noise, recovering the information.

The local beam is useful for noise suppression because its phase is correlated with that of the probe. If you think of light as a wave, with regular crests and troughs, two beams are in phase if their crests and troughs coincide. If the crests of one are aligned with the troughs of the other, their phases are anti-correlated.

But light can also be thought of as consisting of particles, or photons. And at the particle level, phase is a murkier concept.

“Classically, you can prepare beams that are completely opposite in phase, but this is only a valid concept on average,” says Zheshen Zhang, a postdoc in the Optical and Quantum Communications Group and first author on the new paper. “On average, they’re opposite in phase, but quantum mechanics does not allow you to precisely measure the phase of each individual photon.”

Improving the odds

Instead, quantum mechanics interprets phase statistically. Given particular measurements of two photons, from two separate beams of light, there’s some probability that the phases of the beams are correlated. The more photons you measure, the greater your certainty that the beams are either correlated or not. With entangled beams, that certainty increases much more rapidly than it does with classical beams.

When a probe beam interacts with the environment, the noise it accumulates also increases the uncertainty of the ensuing phase measurements. But that’s as true of classical beams as it is of entangled beams. Because entangled beams start out with stronger correlations, even when noise causes them to fall back within classical limits, they still fare better than classical beams do under the same circumstances.

“Going out to the target and reflecting and then coming back from the target attenuates the correlation between the probe and the reference beam by the same factor, regardless of whether you started out at the quantum limit or started out at the classical limit,” Shapiro says. “If you started with the quantum case that’s so many times bigger than the classical case, that relative advantage stays the same, even as both beams become classical due to the loss and the noise.”

In experiments that compared optical systems that used entangled light and classical light, the researchers found that the entangled-light systems increased the signal-to-noise ratio — a measure of how much information can be recaptured from the reflected probe — by 20 percent. That accorded very well with their theoretical predictions.

But the theory also predicts that improvements in the quality of the optical equipment used in the experiment could double or perhaps even quadruple the signal-to-noise ratio. Since detection error declines exponentially with the signal-to-noise ratio, that could translate to a million-fold increase in sensitivity.

Source: MIT News Office

Characteristics of a universal simulator|Study narrows the scope of research on quantum computing

Despite a lot of work being done by many research groups around the world, the field of Quantum computing is still in its early stages. We still need to cover a lot of grounds to achieve the goal of developing a working Quantum computer capable of doing the tasks which are expected or predicted. Recent research by a SISSA led team has tried to give the future research in the area of Quantum computing some direction based on the current state of research in the area.


“A quantum computer may be thought of as a ‘simulator of overall Nature,” explains Fabio Franchini, a researcher at the International School for Advanced Studies (SISSA) of Trieste, “in other words, it’s a machine capable of simulating Nature as a quantum system, something that classical computers cannot do”. Quantum computers are machines that carry out operations by exploiting the phenomena of quantum mechanics, and they are capable of performing different functions from those of current computers. This science is still very young and the systems produced to date are still very limited. Franchini is the first author of a study just published in Physical Review Xwhich establishes a basic characteristic that this type of machine should possess and in doing so guides the direction of future research in this field.

The study used analytical and numerical methods. “What we found” explains Franchini, “is that a system that does not exhibit ‘Majorana fermions’ cannot be a universal quantum simulator”. Majorana fermions were hypothesized by Ettore Majorana in a paper published 1937, and they display peculiar characteristics: a Majorana fermion is also its own antiparticle. “That means that if Majorana fermions meet they annihilate among themselves,” continues Franchini. “In recent years it has been suggested that these fermions could be found in states of matter useful for quantum computing, and our study confirms that they must be present, with a certain probability related to entanglement, in the material used to build the machine”.

Entanglement, or “action at a distance”, is a property of quantum systems whereby an action done on one part of the system has an effect on another part of the same system, even if the latter has been split into two parts that are located very far apart. “Entanglement is a fundamental phenomenon for quantum computers,” explains Franchini.

“Our study helps to understand what types of devices research should be focusing on to construct this universal simulator. Until now, given the lack of criteria, research has proceeded somewhat randomly, with a huge consumption of time and resources”.

The study was conducted with the participation of many other international research institutes in addition to SISSA, including the Massachusetts Institute of Technology (MIT) in Boston, the University of Oxford and many others.

More in detail…

“Having a quantum computer would open up new worlds. For example, if we had one today we would be able to break into any bank account,” jokes Franchini. “But don’t worry, we’re nowhere near that goal”.

At the present time, several attempts at quantum machines exist that rely on the properties of specific materials. Depending on the technology used, these computers have sizes varying from a small box to a whole room, but so far they are only able to process a limited number of information bits, an amount infinitely smaller than that processed by classical computers.

However, it’s not correct to say that quantum computers are, or will be, more powerful than traditional ones, points out Franchini. “There are several things that these devices are worse at. But, by exploiting quantum mechanics, they can perform operations that would be impossible for classical computers”.

Source: International School of Advanced Studies (SISSA)