Tag Archives: environment

NASA Satellite Finds Unreported Sources of Toxic Air Pollution

Using a new satellite-based method, scientists at NASA, Environment and Climate Change Canada, and two universities have located 39 unreported and major human-made sources of toxic sulfur dioxide emissions.

A known health hazard and contributor to acid rain, sulfur dioxide (SO2) is one of six air pollutants regulated by the U.S. Environmental Protection Agency. Current, sulfur dioxide monitoring activities include the use of emission inventories that are derived from ground-based measurements and factors, such as fuel usage. The inventories are used to evaluate regulatory policies for air quality improvements and to anticipate future emission scenarios that may occur with economic and population growth.

 Source: NASA

But, to develop comprehensive and accurate inventories, industries, government agencies and scientists first must know the location of pollution sources.

“We now have an independent measurement of these emission sources that does not rely on what was known or thought known,” said Chris McLinden, an atmospheric scientist with Environment and Climate Change Canada in Toronto and lead author of the study published this week in Nature Geosciences. “When you look at a satellite picture of sulfur dioxide, you end up with it appearing as hotspots – bull’s-eyes, in effect — which makes the estimates of emissions easier.”

The 39 unreported emission sources, found in the analysis of satellite data from 2005 to 2014, are clusters of coal-burning power plants, smelters, oil and gas operations found notably in the Middle East, but also in Mexico and parts of Russia. In addition, reported emissions from known sources in these regions were — in some cases — two to three times lower than satellite-based estimates.

Altogether, the unreported and underreported sources account for about 12 percent of all human-made emissions of sulfur dioxide – a discrepancy that can have a large impact on regional air quality, said McLinden.

The research team also located 75 natural sources of sulfur dioxide — non-erupting volcanoes slowly leaking the toxic gas throughout the year. While not necessarily unknown, many volcanoes are in remote locations and not monitored, so this satellite-based data set is the first to provide regular annual information on these passive volcanic emissions.

“Quantifying the sulfur dioxide bull’s-eyes is a two-step process that would not have been possible without two innovations in working with the satellite data,” said co-author Nickolay Krotkov, an atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

First was an improvement in the computer processing that transforms raw satellite observations from the Dutch-Finnish Ozone Monitoring Instrument aboard NASA’s Aura spacecraft into precise estimates of sulfur dioxide concentrations. Krotkov and his team now are able to more accurately detect smaller sulfur dioxide concentrations, including those emitted by human-made sources such as oil-related activities and medium-size power plants.

Being able to detect smaller concentrations led to the second innovation. McLinden and his colleagues used a new computer program to more precisely detect sulfur dioxide that had been dispersed and diluted by winds. They then used accurate estimates of wind strength and direction derived from a satellite data-driven model to trace the pollutant back to the location of the source, and also to estimate how much sulfur dioxide was emitted from the smoke stack.

“The unique advantage of satellite data is spatial coverage,” said Bryan Duncan, an atmospheric scientist at Goddard. “This paper is the perfect demonstration of how new and improved satellite datasets, coupled with new and improved data analysis techniques, allow us to identify even smaller pollutant sources and to quantify these emissions over the globe.”

The University of Maryland, College Park, and Dalhousie University in Halifax, Nova Scotia, contributed to this study.

For more information about, and access to, NASA’s air quality data, visit:

http://so2.gsfc.nasa.gov/

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives, and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA Earth science research, visit:

http://www.nasa.gov/earth

Live longer? Save the planet? Better diet could nail both

New study shows healthier food choices could dramatically decrease environmental costs of agriculture


As cities and incomes increase around the world, so does consumption of refined sugars, refined fats, oils and resource- and land-intense agricultural products such as beef. A new study led by University of Minnesota ecologist David Tilman shows how a shift away from this trajectory and toward healthier traditional Mediterranean, pescatarian or vegetarian diets could not only boost human lifespan and quality of life, but also slash greenhouse gas emissions and save habitat for endangered species.

The study, published in the November 12 online edition of Nature by Tilman and graduate student Michael Clark, synthesized data on environmental costs of food production, diet trends, relationships between diet and health, and population growth. Their integrated analysis painted a striking picture of the human and environmental health costs of our current diet trajectory as well as how strategically modifying food choices could reduce not only incidence of type II diabetes, coronary heart disease and other chronic diseases, but global agricultural greenhouse gas emissions and habitat degradation, as well.

“We showed that the same dietary changes that can add about a decade to our lives can also prevent massive environmental damage,” said Tilman, a professor in the University’s College of Biological Sciences and resident fellow at the Institute on the Environment. “In particular, if the world were to adopt variations on three common diets, health would be greatly increased at the same time global greenhouse gas emissions were reduced by an amount equal to the current greenhouse gas emissions of all cars, trucks, planes, trains and ships. In addition, this dietary shift would prevent the destruction of an area of tropical forests and savannas as large as half of the United States.”

The researchers found that, as incomes increased between 1961 and 2009, people consumed more meat protein, empty calories and total calories per person. When these trends were combined with forecasts of population growth and income growth for the coming decades, the study predicted that diets in 2050 would contain fewer servings of fruits and vegetables, but about 60 percent more empty calories and 25 to 50 percent more pork, poultry, beef, dairy and eggs — a suite of changes that would increase incidence of type II diabetes, coronary heart disease and some cancers. Using life-cycle analyses of various food production systems, the study also calculated that, if current trends prevail, these 2050 diets would also lead to an 80 percent increase in global greenhouse gas emissions from food production as well as habitat destruction due to land clearing for agriculture around the world.

The study then compared health impacts of the global omnivorous diet with those reported for traditional Mediterranean, pescatarian and vegetarian diets. Adopting these alternative diets could reduce incidence of type II diabetes by about 25 percent, cancer by about 10 percent and death from heart disease by about 20 percent relative to the omnivore diet. Additionally, the adoption of these or similar alternative diets would prevent most or all of the increased greenhouse gas emissions and habitat destruction that would otherwise be caused by both current diet trends and increased global population.

The authors acknowledged that numerous factors go into diet choice, but also pointed out that the alternative diets already are part of the lives of countless people around the world. Noting that variations on the diets used in the scenario could potentially show even greater benefit, they concluded that “the evaluation and implementation of dietary solutions to the tightly linked diet-environment-health trilemma is a global challenge, and opportunity, of great environmental and public health importance.”

Tilman is a Regents Professor and McKnight Presidential Chair in Ecology in the College of Biological Sciences’ Department of Ecology, Evolution and Behavior and a resident fellow in the University of Minnesota’s Institute on the Environment, which seeks lasting solutions to Earth’s biggest challenges through research, partnerships and leadership development. Clark is currently a doctoral student in the College of Food, Agricultural and Natural Resource Sciences.

Source: University of Minnesota

Sustaining Saudi Arabia’s reefs for the future

By Meres J. Weche


 

“About 150 kilometers of Jeddah’s coastline has become useless for sea creatures. If the level of pollution is not controlled or treated then the Kingdom will soon have to import fish and shrimps to meet its demands,” warned Dr. Ahmad Ashour from the Presidency of Meteorology and Environment Protection (PMEP), when speaking to local Saudi media in the past year.

Marine ecological environments, where all kinds of sea creatures, corals, fish and algae evolve, require healthy interactions between the natural habitat and influences from human environments in order to thrive. “What we’ve learned over the past few years is that the reef systems around the Saudi coast are not immune to the global stressors that are affecting reefs all over the planet,” said Dr. Michael Berumen, Associate Professor ofMarine Science at KAUST.

As highlighted in a recent KAUST article focusing on surveying work from the Director of the Red Sea Research Center, Prof. Xabier Igigoien, a major human-induced stressor is pollution – mainly from plastics making their way into the oceans of the world. Another factor are the globally increasing temperatures and the resulting problems from decreasing ocean pH and ocean acidification. So in addition to global problems affecting the coral reef systems, there are also locally specific challenges to be tackled.

For his part, Prof. Michael Berumen believes that another major locally influenced factor that needs to be observed in overfishing. “There’s too many fish in the fish markets and not enough fish in the reefs,” as he deplores. “There’s an imbalance that requires a closer look at promoting sustainable fishing practices.”

Where Have All the Big Fish Gone?

Saudi Arabia is fortunate to have enormous systems of reefs, a large reef habitat and a huge coastline with healthy reefs. Moreover, the relatively low population level along the Red Sea coast, apart from a few large urban areas would, generally speaking, minimize negative human impacts on the marine ecology. Also, the fact that there are no big river systems flowing into the Red Sea makes this maritime environment very unique.

The latter point is significant because in most places in the world, where lands are transformed by farming, intensive agricultural practices introduce all kinds of chemicals, pesticides and fertilizers — which change the composition of the land. When there’s a big rainstorm, or wet season, all this altered soil gets dumped into the sea. This is not a problem that exists in Saudi Arabia.

This is why when Prof. Michael Berumen and a team of reef experts from Australia and the US-based Woods Hole Oceanographic Institution first started diving in the Red Sea along the Saudi coast about seven years ago, they were surprised with what they observed. As Berumen recalls:

“On our very first trip we were on a boat that went from Yanbu to Jeddah, so including the reefs here in Thuwal. We cruised southwards and every few kilometers we were stopping and surveying a reef. It really was within about 3 or 4 dives that we all started saying that something was missing here. The reefs looked great but we were missing those top predators. They were just not there. ‘Where are they?’ we asked. Where are all the sharks that we should be seeing?”

Through KAUST’s partnership with the Woods Hole Oceanographic Institution, a team began a project to look into fishing pressures. They sought to understand why it was that directly across the Red Sea, on the Sudanese coast, other expeditions observed the presence of far more big fish.

“There are sharks on almost all the dives in the Sudan; there are big groupers, big jacks, and big snappers. There are all these big top predator fish which we notably don’t have here. It’s indeed very rare to see sharks and big groupers or big snappers on the Saudi reefs,” as Prof. Berumen explained.

What the Woods Hole surveying team found, partially using data from the fisheries department within the Saudi Ministry of Agriculture, was that “most species of fish have more or less collapsed as a fishery even as many as two or three decades ago.”

Prof. Berumen estimates that there are between 8,000-10,000 fishing boats, which practice what he characterizes as “artisanal industrial fishing,” operating along the Saudi coast.

While this doesn’t involve big industrial fishing fleets as one would normally think of when considering commercial fishing, the sheer numbers of these fishermen collectively exert as much pressure on the fisheries as industrial fishing. They’re basically using hand lines, single lines, some nets and maybe some traps; but the constant fishing has a severe impact.

“I don’t think there are any reefs in this region — even on the furthest offshore reefs that we’ve gone to here — where we didn’t regularly see fishing boats. So I think fishing pressure all through here is fairly homogenous,” said Berumen.

The Role of Education for Conservation Efforts

In addition to overfishing, the other major stressor to the Red Sea coastal reefs and marine ecology is again caused by widespread pollution. “When you drive to Thuwal from Jeddah, what do you see? A forest of plastic bags; and so much of that plastic ends up in the sea,” said Prof. Berumen. The problem isn’t just limited to the vicinities of large urban agglomerations. In fact, plastic remnants can be found across the Saudi coast. “Plastic is going to be a major challenge for us for decades and decades to come,” he adds.

Even in remote areas such as between the Farasan Islands and Al-Lith, which Michael Berumen calls “Saudi Arabia’s Great Barrier Reef” and where there are hundreds of really nice reefs, the problem can be observed. “It’s far away from big cities but it doesn’t matter. The islands in that region have got lots of trash and plastics,” explains Berumen. “The little fish that are migrating up and down are probably eating a lot of that plastic.”

The presence of KAUST and its Red Sea Research Center over the past few years has been instrumental in conducting important surveying and research work to tackle those twin problems of pollution and overfishing that are having a devastating effect on the Red Sea’s marine ecology environment.

But Prof. Berumen is quick to point out that it’s out of KAUST’s scope, or mission, to advocate for the enforcement of fishing regulations. The valuable research and surveying work being done on the Red Sea’s marine life by KAUST marine scientists can nonetheless serve as a valuable benchmark in the event that relevant authorities sought to institute such regulations. Examples would be restrictions on maximum or minimum fish size, daily catch amount limits, seasonal closures, and restricted fishing locations. So KAUST is already well positioned to consult government bodies on devising conservation strategies.

“What we should be, and are, doing is to collect the data. When and if we’re ever asked for it we are ready to provide scientifically sound reasoning for specific policies or changes in practices. We won’t need to ask the regulators to come back in five years for results,” as Berumen explained.

What KAUST is actively committed to doing however is to educate the public about the importance of marine ecology conservation. Outlining this goal, Prof. Berumen says:

“One of the things that I think we as a center and a university have to try to address is that education gap. There’s an old conservation saying that if you don’t know what you’ve got, it’s impossible to care about it. If you don’t even know it’s there it’s really hard to be concerned about it.”

One good example of a very positive sign which Prof. Berumen points to in the last couple of years has been the successful opening of the Fakieh Aquarium along Jeddah’s Corniche. A first of its kind in the Kingdom, the aquarium “promotes the conservation of the environment by spreading awareness through education and entertainment.”

The aquarium welcomes thousands of visitors per week. “That’s great because I know it’s happening,” said Berumen. “I’ve been there and I’ve watched the people come in and say: ‘Really? We have this literally a hundred meters away? If I jumped out into the water off the Corniche I would see these things?”

Prof. Berumen believes that this is the exposure that has been missing. “People were not exposed to what they had in their own backyard,” he said. He observes the same reaction when taking local Jeddah residents snorkeling for the first time. “So I’m optimistic that there are steps in the right direction and eventually there’ll be a sea change, as it were, in the public attitude toward conservation.”

Source: KAUST News

Computerized model showing simulation of the city of Jeddah under flooding conditions. The cloudy sky indicates the spatial distribution of the amount of rain over Jeddah. Credit: KAUST

KAUST scientists developing models to predict extreme events

As KAUST celebrates its five-year anniversary, the community has a plethora of milestones to celebrate, not to mention more than a few memorable events to look back on. Interestingly, one of these noteworthy events, in the form of an unforeseen natural occurrence, still serves as the basis for ongoing interdisciplinary research at the University. Shortly following KAUST’s Inauguration, on November 25, 2009, over 140 millimeters of rain fell over the Jeddah region within a mere eight hours, causing in excess of 100 fatalities and resulting in an economic setback of over $100M.

“All this rain coming at the same time, in a matter of few hours, meant the water had nowhere to go; so it went into the streets,” said KAUST’s Ibrahim Hoteit, Associate Professor of Earth Sciences and Engineering and Principal Investigator of the Earth Fluid Modeling and Prediction group. Flash floods present a particular challenge in arid areas with limited sewage systems.

Computerized model showing simulation of the city of Jeddah under flooding conditions. The cloudy sky indicates the spatial distribution of the amount of rain over Jeddah. Credit: KAUST
Computerized model showing simulation of the city of Jeddah under flooding conditions. The cloudy sky indicates the spatial distribution of the amount of rain over Jeddah. Credit: KAUST

“The rain doesn’t get quickly absorbed in this region.” As Prof. Hoteit further explains: “We’re trying to reconstruct the rain event that happened during the 2009 and 2001 floods using modeling and observations.” As he emphasizes, “models predict the future data and the data guide the model toward the truth.”

He points to an impressive computerized model of Jeddah on his monitor, capturing over 20,000 buildings, complete with surrounding mountains and estimated paths taken by the water as it flooded the city.

Constructing Predictive Models for Jeddah Flooding

“In order to build a local model at the level of Jeddah, we downscale from global to regional MENA (Middle East & North Africa)-wide models all the way down to a few hundred meters over Jeddah,” as Hoteit outlines. To obtain the MENA region data, his team used data from satellites and international sources.

As they eventually zoomed in over the Jeddah region, the local data was provided by Presidency of Meteorology and Environment (PME) and the Jeddah Municipal government. The data collected is then used to complement and guide the atmospheric and weather models employed to forecast.

“Using all available observations and state-of-the-art weather forecasting models, our simulations suggest that we could predict these devastating extreme rain events one or two days in advance. So we can greatly improve the prediction of these events and issue timely warnings,” said Prof. Hoteit.

The rain is then used as input in developing very high-resolution models to simulate street flooding in the city of Jeddah.

It’s important to keep in mind that environmental fluid models are not perfect, and as such their outputs can be modeled as random variabilities with some distributions. “The question of how good or certain our forecast is dependent on a complex mathematical and computational problem. We strive to compute the best possible representation of the distribution of the system state given the models and available data.”

These sophisticated models, taking into account input and modeling uncertainties, are achieved through highly multidisciplinary work involving various teams at KAUST. Prof. Hoteit closely collaborates with KAUST’s Prof. Omar Knio, a world expert in the field of uncertainty quantification. He also relies heavily on collaborations with the high performance computing and visualization teams. “Visualization is very important for us as a way to communicate our scientific concepts to people and users,” explained Hoteit.

Ocean Modeling and the Impact of Sea Currents

In an effort to build forecasting models meant to predict extreme marine and weather events, Prof. Hoteit and his group also rely on ocean and atmospheric observations. For any environmental model to be effective, it’s important to complement it with actual data collected from the whole region and locally.

Working with data sets collected from Saudi Aramco, from PME, as well as from satellite data, KAUST was able to develop a 14-year reanalysis (from the years 2000 to 2014) of atmospheric conditions over the Red Sea at a 10-kilometer resolution – one of the highest and most accurate of its kind in the region.

As they eventually zoomed in over the Jeddah region, the local data was provided by Presidency of Meteorology and Environment (PME) and the Jeddah Municipal government. The data collected is then used to complement and guide the atmospheric and weather models employed to forecast.

“Using all available observations and state-of-the-art weather forecasting models, our simulations suggest that we could predict these devastating extreme rain events one or two days in advance. So we can greatly improve the prediction of these events and issue timely warnings,” said Prof. Hoteit.

The rain is then used as input in developing very high-resolution models to simulate street flooding in the city of Jeddah.

It’s important to keep in mind that environmental fluid models are not perfect, and as such their outputs can be modeled as random variabilities with some distributions. “The question of how good or certain our forecast is dependent on a complex mathematical and computational problem. We strive to compute the best possible representation of the distribution of the system state given the models and available data.”

These sophisticated models, taking into account input and modeling uncertainties, are achieved through highly multidisciplinary work involving various teams at KAUST. Prof. Hoteit closely collaborates with KAUST’s Prof. Omar Knio, a world expert in the field of uncertainty quantification. He also relies heavily on collaborations with the high performance computing and visualization teams. “Visualization is very important for us as a way to communicate our scientific concepts to people and users,” explained Hoteit.

Ocean Modeling and the Impact of Sea Currents

In an effort to build forecasting models meant to predict extreme marine and weather events, Prof. Hoteit and his group also rely on ocean and atmospheric observations. For any environmental model to be effective, it’s important to complement it with actual data collected from the whole region and locally.

Working with data sets collected from Saudi Aramco, from PME, as well as from satellite data, KAUST was able to develop a 14-year reanalysis (from the years 2000 to 2014) of atmospheric conditions over the Red Sea at a 10-kilometer resolution – one of the highest and most accurate of its kind in the region.

Source: KAUST