Tag Archives: gravitational

The LIGO Scientific Collaboration and the Virgo Collaboration identify a second gravitational wave event from another pair of black holes in the data from Advanced LIGO detectors

Gravitational waves detected from second pair of colliding black holes

The LIGO Scientific Collaboration and the Virgo Collaboration identify a second gravitational wave event in the data from Advanced LIGO detectors


PAPER: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.241103

IMAGES & AUDIO: https://caltech.app.box.com/v/LIGO-JuneAAS


On December 26, 2015 at 03:38:53 UTC, scientists observed gravitational waves–ripples in the fabric of spacetime–for the second time.

The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA.

The LIGO Observatories are funded by the National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.

Gravitational waves carry information about their origins and about the nature of gravity that cannot otherwise be obtained, and physicists have concluded that these gravitational waves were produced during the final moments of the merger of two black holes–14 and 8 times the mass of the sun–to produce a single, more massive spinning black hole that is 21 times the mass of the sun.

“It is very significant that these black holes were much less massive than those observed in the first detection,” says Gabriela González, LIGO Scientific Collaboration (LSC) spokesperson and professor of physics and astronomy at Louisiana State University. “Because of their lighter masses compared to the first detection, they spent more time–about one second–in the sensitive band of the detectors. It is a promising start to mapping the populations of black holes in our universe.”

During the merger, which occurred approximately 1.4 billion years ago, a quantity of energy roughly equivalent to the mass of the sun was converted into gravitational waves. The detected signal comes from the last 27 orbits of the black holes before their merger. Based on the arrival time of the signals–with the Livingston detector measuring the waves 1.1 milliseconds before the Hanford detector–the position of the source in the sky can be roughly determined.

“In the near future, Virgo, the European interferometer, will join a growing network of gravitational wave detectors, which work together with ground-based telescopes that follow-up on the signals,” notes Fulvio Ricci, the Virgo Collaboration spokesperson, a physicist at Istituto Nazionale di Nucleare (INFN) and professor at Sapienza University of Rome. “The three interferometers together will permit a far better localization in the sky of the signals.”

The first detection of gravitational waves, announced on February 11, 2016, was a milestone in physics and astronomy; it confirmed a major prediction of Albert Einstein’s 1915 general theory of relativity, and marked the beginning of the new field of gravitational-wave astronomy.

The second discovery “has truly put the ‘O’ for Observatory in LIGO,” says Caltech’s Albert Lazzarini, deputy director of the LIGO Laboratory. “With detections of two strong events in the four months of our first observing run, we can begin to make predictions about how often we might be hearing gravitational waves in the future. LIGO is bringing us a new way to observe some of the darkest yet most energetic events in our universe.”

“We are starting to get a glimpse of the kind of new astrophysical information that can only come from gravitational wave detectors,” says MIT’s David Shoemaker, who led the Advanced LIGO detector construction program.

Both discoveries were made possible by the enhanced capabilities of Advanced LIGO, a major upgrade that increases the sensitivity of the instruments compared to the first generation LIGO detectors, enabling a large increase in the volume of the universe probed

“With the advent of Advanced LIGO, we anticipated researchers would eventually succeed at detecting unexpected phenomena, but these two detections thus far have surpassed our expectations,” says NSF Director France A. Córdova. “NSF’s 40-year investment in this foundational research is already yielding new information about the nature of the dark universe.”

Advanced LIGO’s next data-taking run will begin this fall. By then, further improvements in detector sensitivity are expected to allow LIGO to reach as much as 1.5 to 2 times more of the volume of the universe. The Virgo detector is expected to join in the latter half of the upcoming observing run.

LIGO research is carried out by the LIGO Scientific Collaboration (LSC), a group of more than 1,000 scientists from universities around the United States and in 14 other countries. More than 90 universities and research institutes in the LSC develop detector technology and analyze data; approximately 250 students are strong contributing members of the collaboration. The LSC detector network includes the LIGO interferometers and the GEO600 detector.

Virgo research is carried out by the Virgo Collaboration, consisting of more than 250 physicists and engineers belonging to 19 different European research groups: 6 from Centre National de la Recherche Scientifique (CNRS) in France; 8 from the Istituto Nazionale di Fisica Nucleare (INFN) in Italy; 2 in The Netherlands with Nikhef; the MTA Wigner RCP in Hungary; the POLGRAW group in Poland and the European Gravitational Observatory (EGO), the laboratory hosting the Virgo detector near Pisa in Italy.

The NSF leads in financial support for Advanced LIGO. Funding organizations in Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council, STFC) and Australia (Australian Research Council) also have made significant commitments to the project.

Several of the key technologies that made Advanced LIGO so much more sensitive have been developed and tested by the German UK GEO collaboration. Significant computer resources have been contributed by the AEI Hannover Atlas Cluster, the LIGO Laboratory, Syracuse University, the ARCCA cluster at Cardiff University, the University of Wisconsin-Milwaukee, and the Open Science Grid. Several universities designed, built, and tested key components and techniques for Advanced LIGO: The Australian National University, the University of Adelaide, the University of Western Australia, the University of Florida, Stanford University, Columbia University in the City of New York, and Louisiana State University. The GEO team includes scientists at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI), Leibniz Universität Hannover, along with partners at the University of Glasgow, Cardiff University, the University of Birmingham, other universities in the United Kingdom and Germany, and the University of the Balearic Islands in Spain.


 

MEDIA CONTACTS

For more information and interview requests, please contact:

MIT
Kimberly Allen
Director of Media Relations
Deputy Director, MIT News Office
617-253-2702 (office)
617-852-6094 (cell)
allenkc@mit.edu

Caltech
Whitney Clavin
Senior Content and Media Strategist
626-390-9601 (cell)
wclavin@caltech.edu

NSF
Ivy Kupec
Media Officer
703-292-8796 (Office)
703-225-8216 (Cell)
ikupec@nsf.gov

LIGO Scientific Collaboration
Mimi LaValle
External Relations Manager
Louisiana State University
225-439-5633 (Cell)

http://mlavall@lsu.edu

EGO-European Gravitational Observatory
Séverine Perus
Media Contact
severine.perus@ego-gw.it
Tel +39 050752325

The system Kepler-444 formed when the Milky Way galaxy was a youthful two billion years old. The planets were detected from the dimming that occurs when they transit the disc of their parent star, as shown in this artist's conception.

Image courtesy of NASA

Circular orbits identified for 74 small exoplanets

Observations of 74 Earth-sized planets around distant stars may narrow field of habitable candidates.

By Jennifer Chu


CAMBRIDGE, Mass. – Viewed from above, our solar system’s planetary orbits around the sun resemble rings around a bulls-eye. Each planet, including Earth, keeps to a roughly circular path, always maintaining the same distance from the sun.

The system Kepler-444 formed when the Milky Way galaxy was a youthful two billion years old. The planets were detected from the dimming that occurs when they transit the disc of their parent star, as shown in this artist's conception. Image courtesy of NASA
The system Kepler-444 formed when the Milky Way galaxy was a youthful two billion years old. The planets were detected from the dimming that occurs when they transit the disc of their parent star, as shown in this artist’s conception.
Image courtesy of NASA

For decades, astronomers have wondered whether the solar system’s circular orbits might be a rarity in our universe. Now a new analysis suggests that such orbital regularity is instead the norm, at least for systems with planets as small as Earth.

In a paper published in the Astrophysical Journal, researchers from MIT and Aarhus University in Denmark report that 74 exoplanets, located hundreds of light-years away, orbit their respective stars in circular patterns, much like the planets of our solar system.

These 74 exoplanets, which orbit 28 stars, are about the size of Earth, and their circular trajectories stand in stark contrast to those of more massive exoplanets, some of which come extremely close to their stars before hurtling far out in highly eccentric, elongated orbits.

“Twenty years ago, we only knew about our solar system, and everything was circular and so everyone expected circular orbits everywhere,” says Vincent Van Eylen, a visiting graduate student in MIT’s Department of Physics. “Then we started finding giant exoplanets, and we found suddenly a whole range of eccentricities, so there was an open question about whether this would also hold for smaller planets. We find that for small planets, circular is probably the norm.”

Ultimately, Van Eylen says that’s good news in the search for life elsewhere. Among other requirements, for a planet to be habitable, it would have to be about the size of Earth — small and compact enough to be made of rock, not gas. If a small planet also maintained a circular orbit, it would be even more hospitable to life, as it would support a stable climate year-round. (In contrast, a planet with a more eccentric orbit might experience dramatic swings in climate as it orbited close in, then far out from its star.)

“If eccentric orbits are common for habitable planets, that would be quite a worry for life, because they would have such a large range of climate properties,” Van Eylen says. “But what we find is, probably we don’t have to worry too much because circular cases are fairly common.”

Star-crossed numbers

In the past, researchers have calculated the orbital eccentricities of large, “gas giant” exoplanets using radial velocity — a technique that measures a star’s movement. As a planet orbits a star, its gravitational force will tug on the star, causing it to move in a pattern that reflects the planet’s orbit. However, the technique is most successful for larger planets, as they exert enough gravitational pull to influence their stars.

Researchers commonly find smaller planets by using a transit-detecting method, in which they study the light given off by a star, in search of dips in starlight that signify when a planet crosses, or “transits,” in front of that star, momentarily diminishing its light. Ordinarily, this method only illuminates a planet’s existence, not its orbit. But Van Eylen and his colleague Simon Albrecht, of Aarhus University, devised a way to glean orbital information from stellar transit data.

They first reasoned that if they knew the mass and radius of a planet’s star, they could calculate how long a planet would take to orbit that star, if its orbit were circular. The mass and radius of a star determines its gravitational pull, which in turn influences how fast a planet travels around the star.

By calculating a planet’s orbital velocity in a circular orbit, they could then estimate a transit’s duration — how long a planet would take to cross in front of a star. If the calculated transit matched an actual transit, the researchers reasoned that the planet’s orbit must be circular. If the transit were longer or shorter, the orbit must be more elongated, or eccentric.

Not so eccentric

To obtain actual transit data, the team looked through data collected over the past four years by NASA’s Kepler telescope — a space observatory that surveys a slice of the sky in search of habitable planets. The telescope has monitored the brightness of over 145,000 stars, only a fraction of which have been characterized in any detail.

The team chose to concentrate on 28 stars for which mass and radius have previously been measured, using asteroseismology — a technique that measures stellar pulsations, which reflect a star’s mass and radius.

These 28 stars host multiplanet systems — 74 exoplanets in all. The researchers obtained Kepler data for each exoplanet, looking not only for the occurrence of transits, but also their duration. Given the mass and radius of the host stars, the team calculated each planet’s transit duration if its orbit were circular, then compared the estimated transit durations with actual transit durations from Kepler data.

Across the board, Van Eylen and Albrecht found the calculated and actual transit durations matched, suggesting that all 74 exoplanets maintain circular, not eccentric, orbits.

“We found that most of them matched pretty closely, which means they’re pretty close to being circular,” Van Eylen says. “We are very certain that if very high eccentricities were common, we would’ve seen that, which we don’t.”

Van Eylen says the orbital results for these smaller planets may eventually help to explain why larger planets have more extreme orbits.

“We want to understand why some exoplanets have extremely eccentric orbits, while in other cases, such as the solar system, planets orbit mostly circularly,” Van Eylen says. “This is one of the first times we’ve reliably measured the eccentricities of small planets, and it’s exciting to see they are different from the giant planets, but similar to the solar system.”

This research was funded in part by the European Research Council.

 

Related links

ARCHIVE: New technique allows analysis of clouds around exoplanets
http://newsoffice.mit.edu/2015/clouds-around-exoplanets-0303

ARCHIVE: New technique measures mass of exoplanets
http://newsoffice.mit.edu/2013/new-technique-measures-mass-of-exoplanets-1219

ARCHIVE: Researchers discover that an exoplanet is Earth-like in mass and size
http://newsoffice.mit.edu/2013/kepler-78b-earth-like-in-mass-and-size-1030

 

Source: MIT News Office

The powerful gravity of a galaxy embedded in a massive cluster of galaxies in this Hubble Space Telescope image is producing multiple images of a single distant supernova far behind it. Both the galaxy and the galaxy cluster are acting like a giant cosmic lens, bending and magnifying light from the supernova behind them, an effect called gravitational lensing.

The image shows the galaxy's location within a hefty cluster of galaxies called MACS J1149.6+2223, located more than 5 billion light-years away. In the enlarged inset view of the galaxy, the arrows point to the multiple copies of the exploding star, dubbed Supernova Refsdal, located 9.3 billion light-years from Earth. The images are arranged around the galaxy in a cross-shaped pattern called an Einstein Cross. The blue streaks wrapping around the galaxy are the stretched images of the supernova's host spiral galaxy, which has been distorted by the warping of space.

The four images were spotted on Nov. 11, 2014. This Hubble image combines data from three months of observations taken in visible light by the Advanced Camera for Surveys and in near-infrared light by the Wide Field Camera 3.

Object Names: SN Refsdal, MACS J1149.6+2223


Credit: NASA, ESA, and S. Rodney (JHU) and the FrontierSN team; T. Treu (UCLA), P. Kelly (UC Berkeley), and the GLASS team; J. Lotz (STScI) and the Frontier Fields team; M. Postman (STScI) and the CLASH team; and Z. Levay (STScI)

Significant progress in dark matter studies: Hubble Sees Supernova Split into Four Images by Cosmic Lens

Some of astronomy’s biggest goals include the study of dark matter and dark energy. These two phenomena were indirectly observed in 20th century and the questions about their nature still puzzle us. Astronomers, cosmologists, particle physicists, theoretical physicists and researchers in other related areas are trying hard to find more and more clues about the nature of dark matter and dark energy which comprise of around 95% of our universe.

The powerful gravity of a galaxy embedded in a massive cluster of galaxies in this Hubble Space Telescope image is producing multiple images of a single distant supernova far behind it. Both the galaxy and the galaxy cluster are acting like a giant cosmic lens, bending and magnifying light from the supernova behind them, an effect called gravitational lensing. The image shows the galaxy’s location within a hefty cluster of galaxies called MACS J1149.6+2223, located more than 5 billion light-years away. In the enlarged inset view of the galaxy, the arrows point to the multiple copies of the exploding star, dubbed Supernova Refsdal, located 9.3 billion light-years from Earth.
The images are arranged around the galaxy in a cross-shaped pattern called an Einstein Cross. The blue streaks wrapping around the galaxy are the stretched images of the supernova’s host spiral galaxy, which has been distorted by the warping of space. The four images were spotted on Nov. 11, 2014. This Hubble image combines data from three months of observations taken in visible light by the Advanced Camera for Surveys and in near-infrared light by the Wide Field Camera 3.
Object Names: SN Refsdal, MACS J1149.6+2223
Credit: NASA, ESA, and S. Rodney (JHU) and the FrontierSN team; T. Treu (UCLA), P. Kelly (UC Berkeley), and the GLASS team; J. Lotz (STScI) and the Frontier Fields team; M. Postman (STScI) and the CLASH team; and Z. Levay (STScI)

Astronomers using NASA’s Hubble Space Telescope have spotted for the first time a distant supernova split into four images. The multiple images of the exploding star are caused by the powerful gravity of a foreground elliptical galaxy embedded in a massive cluster of galaxies.

This unique observation will help astronomers refine their estimates of the amount and distribution of dark matter in the lensing galaxy and cluster. Dark matter cannot be seen directly but is believed to make up most of the universe’s mass.

The gravity from both the elliptical galaxy and the galaxy cluster distorts and magnifies the light from the supernova behind them, an effect called gravitational lensing. First predicted by Albert Einstein, this effect is similar to a glass lens bending light to magnify and distort the image of an object behind it. The multiple images are arranged around the elliptical galaxy in a cross-shaped pattern called an Einstein Cross, a name originally given to a particular multiply imaged quasar, the bright core of an active galaxy.

The elliptical galaxy and its cluster, MACS J1149.6+2223, are 5 billion light-years from Earth. The supernova behind it is 9.3 billion light-years away.

Although astronomers have discovered dozens of multiply imaged galaxies and quasars, they have never seen a stellar explosion resolved into several images. “It really threw me for a loop when I spotted the four images surrounding the galaxy — it was a complete surprise,” said Patrick Kelly of the University of California, Berkeley, a member of the Grism Lens Amplified Survey from Space (GLASS) collaboration. The GLASS group is working with the Frontier Field Supernova (FrontierSN) team to analyze the exploding star. Kelly is also the lead author on the science paper, which will appear on March 6 in a special issue of the journal Science celebrating the centenary of Albert Einstein’s Theory of General Relativity.

When the four images fade away, astronomers predict they will have a rare opportunity to catch a rerun of the supernova. This is because the current four-image pattern is only one part of the lensing display. The supernova may have appeared as a single image some 20 years ago elsewhere in the cluster field, and it is expected to reappear once more within the next five years.

This prediction is based on computer models of the cluster, which describe the various paths the supernova light is taking through the maze of clumpy dark matter in the galactic grouping. Each image takes a different route through the cluster and arrives at a different time, due, in part, to differences in the length of the pathways the light follows to reach Earth. The four supernova images captured by Hubble, for example, appeared within a few days or weeks of each other.

The supernova’s various light paths are analogous to several trains that leave a station at the same time, all traveling at the same speed and bound for the same location. Each train, however, takes a different route, and the distance for each route is not the same. Some trains travel over hills. Others go through valleys, and still others chug around mountains. Because the trains travel over different track lengths across different terrain, they do not arrive at their destination at the same time. Similarly, the supernova images do not appear at the same time because some of the light is delayed by traveling around bends created by the gravity of dense dark matter in the intervening galaxy cluster.

“Our model for the dark matter in the cluster gives us the prediction of when the next image will appear because it tells us how long each train track is, which correlates with time,” said Steve Rodney of the Johns Hopkins University in Baltimore, Maryland, leader of the FrontierSN team. “We already missed one that we think appeared about 20 years ago, and we found these four images after they had already appeared. The prediction of this future image is the one that is most exciting because we might be able to catch it. We hope to come back to this field with Hubble, and we’ll keep looking to see when that expected next image appears.”

Measuring the time delays between images offers clues to the type of warped-space terrain the supernova’s light had to cover and will help the astronomers fine-tune the models that map out the cluster’s mass. “We will measure the time delays, and we’ll go back to the models and compare them to the model predictions of the light paths,” Kelly said. “The lens modelers, such as Adi Zitrin (California Institute of Technology) from our team, will then be able to adjust their models to more accurately recreate the landscape of dark matter, which dictates the light travel time.”

While making a routine search of the GLASS team’s data, Kelly spotted the four images of the exploding star on Nov. 11, 2014. The FrontierSN and GLASS teams have been searching for such highly magnified explosions since 2013, and this object is their most spectacular discovery. The supernova appears about 20 times brighter than its natural brightness, due to the combined effects of two overlapping lenses. The dominant lensing effect is from the massive galaxy cluster, which focuses the supernova light along at least three separate paths. A secondary lensing effect occurs when one of those light paths happens to be precisely aligned with a specific elliptical galaxy within the cluster. “The dark matter of that individual galaxy then bends and refocuses the light into four more paths,” Rodney explained, “generating the rare Einstein Cross pattern we are currently observing.”

The two teams spent a week analyzing the object’s light, confirming it was the signature of a supernova. They then turned to the W.M. Keck Observatory on Mauna Kea, in Hawaii, to measure the distance to the supernova’s host galaxy.

The astronomers nicknamed the supernova Refsdal in honor of Norwegian astronomer Sjur Refsdal, who, in 1964, first proposed using time-delayed images from a lensed supernova to study the expansion of the universe. “Astronomers have been looking to find one ever since,” said Tommaso Treu of the University of California, Los Angeles, the GLASS project’s principal investigator. “The long wait is over!”

The Frontier Fields survey is a three-year program that uses Hubble and the gravitational-lensing effects of six massive galaxy clusters to probe not only what is inside the clusters but also what is beyond them. The three-year FrontierSN program studies supernovae that appear in and around the galaxy clusters of the Frontier Fields and GLASS surveys. The GLASS survey is using Hubble’s spectroscopic capabilities to study remote galaxies through the cosmic telescopes of 10 massive galaxy clusters, including the six in the Frontier Fields.

Supernova Refsdal and Galaxy Cluster MACS J1149.6+2223
Source: Hubblesite.org

Source: Hubble Site