Tag Archives: harps

This image shows the sky around the star 51 Pegasi in the northern constellation of Pegasus (The Winged Horse).  In 1995 the first exoplanet to be discovered was detected orbiting this star. Twenty years later this object was also the first exoplanet to be be directly detected spectroscopically in visible light. This image was created from photographic material forming part of the Digitized Sky Survey 2.

Credit:
ESO/Digitized Sky Survey 2

First Exoplanet Visible Light Spectrum

New technique paints promising picture for future


Astronomers using the HARPS planet-hunting machine at ESO’s La Silla Observatory in Chile have made the first-ever direct detection of the spectrum of visible light reflected off an exoplanet. These observations also revealed new properties of this famous object, the first exoplanet ever discovered around a normal star: 51 Pegasi b. The result promises an exciting future for this technique, particularly with the advent of next generation instruments, such as ESPRESSO, on the VLT, and future telescopes, such as the E-ELT.

The exoplanet 51 Pegasi b [1] lies some 50 light-years from Earth in the constellation of Pegasus. It was discovered in 1995 and will forever be remembered as the first confirmed exoplanet to be found orbiting an ordinary star like the Sun [2]. It is also regarded as the archetypal hot Jupiter — a class of planets now known to be relatively commonplace, which are similar in size and mass to Jupiter, but orbit much closer to their parent stars.

Since that landmark discovery, more than 1900 exoplanets in 1200 planetary systems have been confirmed, but, in the year of the twentieth anniversary of its discovery, 51 Pegasi b returns to the ring once more to provide another advance in exoplanet studies.

The team that made this new detection was led by Jorge Martins from the Instituto de Astrofísica e Ciências do Espaço (IA) and the Universidade do Porto, Portugal, who is currently a PhD student at ESO in Chile. They used the HARPS instrument on the ESO 3.6-metre telescope at the La Silla Observatory in Chile.

This image shows the sky around the star 51 Pegasi in the northern constellation of Pegasus (The Winged Horse).  In 1995 the first exoplanet to be discovered was detected orbiting this star. Twenty years later this object was also the first exoplanet to be be directly detected spectroscopically in visible light. This image was created from photographic material forming part of the Digitized Sky Survey 2. Credit: ESO/Digitized Sky Survey 2
This image shows the sky around the star 51 Pegasi in the northern constellation of Pegasus (The Winged Horse). In 1995 the first exoplanet to be discovered was detected orbiting this star. Twenty years later this object was also the first exoplanet to be be directly detected spectroscopically in visible light. This image was created from photographic material forming part of the Digitized Sky Survey 2.
Credit:
ESO/Digitized Sky Survey 2

Currently, the most widely used method to examine an exoplanet’s atmosphere is to observe the host star’s spectrum as it is filtered through the planet’s atmosphere during transit — a technique known as transmission spectroscopy. An alternative approach is to observe the system when the star passes in front of the planet, which primarily provides information about the exoplanet’s temperature.

The new technique does not depend on finding a planetary transit, and so can potentially be used to study many more exoplanets. It allows the planetary spectrum to be directly detected in visible light, which means that different characteristics of the planet that are inaccessible to other techniques can be inferred.

The host star’s spectrum is used as a template to guide a search for a similar signature of light that is expected to be reflected off the planet as it describes its orbit. This is an exceedingly difficult task as planets are incredibly dim in comparison to their dazzling parent stars.

The signal from the planet is also easily swamped by other tiny effects and sources of noise [3]. In the face of such adversity, the success of the technique when applied to the HARPS data collected on 51 Pegasi b provides an extremely valuable proof of concept.

Jorge Martins explains: “This type of detection technique is of great scientific importance, as it allows us to measure the planet’s real mass and orbital inclination, which is essential to more fully understand the system. It also allows us to estimate the planet’s reflectivity, or albedo, which can be used to infer the composition of both the planet’s surface and atmosphere.”

51 Pegasi b was found to have a mass about half that of Jupiter’s and an orbit with an inclination of about nine degrees to the direction to the Earth [4]. The planet also seems to be larger than Jupiter in diameter and to be highly reflective. These are typical properties for a hot Jupiter that is very close to its parent star and exposed to intense starlight.

HARPS was essential to the team’s work, but the fact that the result was obtained using the ESO 3.6-metre telescope, which has a limited range of application with this technique, is exciting news for astronomers. Existing equipment like this will be surpassed by much more advanced instruments on larger telescopes, such as ESO’s Very Large Telescope and the future European Extremely Large Telescope [5].

“We are now eagerly awaiting first light of the ESPRESSO spectrograph on the VLT so that we can do more detailed studies of this and other planetary systems,” concludes Nuno Santos, of the IA and Universidade do Porto, who is a co-author of the new paper.

Notes
[1] Both 51 Pegasi b and its host star 51 Pegasi are among the objects available for public naming in the IAU’s NameExoWorlds contest.

[2] Two earlier planetary objects were detected orbiting in the extreme environment of a pulsar.

[3] The challenge is similar to trying to study the faint glimmer reflected off a tiny insect flying around a distant and brilliant light.

[4] This means that the planet’s orbit is close to being edge on as seen from Earth, although this is not close enough for transits to take place.

[5] ESPRESSO on the VLT, and later even more powerful instruments on much larger telescopes such as the E-ELT, will allow for a significant increase in precision and collecting power, aiding the detection of smaller exoplanets, while providing an increase in detail in the data for planets similar to 51 Pegasi b.

Source: ESO

Artist’s impression of exocomets around Beta Pictoris. Credit: ESO

Two Families of Comets Found Around Nearby Star

Two Families of Comets Found Around Nearby Star


The HARPS instrument at ESO’s La Silla Observatory in Chile has been used to make the most complete census of comets around another star ever created. A French team of astronomers has studied nearly 500 individual comets orbiting the star Beta Pictoris and has discovered that they belong to two distinct families of exocomets: old exocomets that have made multiple passages near the star, and younger exocomets that probably came from the recent breakup of one or more larger objects. The new results will appear in the journal Nature on 23 October 2014.

Beta Pictoris is a young star located about 63 light-years from the Sun. It is only about 20 million years old and is surrounded by a huge disc of material — a very active young planetary system where gas and dust are produced by the evaporation of comets and the collisions of asteroids.

Artist’s impression of exocomets around Beta Pictoris. Credit: ESO
Artist’s impression of exocomets around Beta Pictoris. Credit: ESO

Flavien Kiefer (IAP/CNRS/UPMC), lead author of the new study sets the scene: “Beta Pictoris is a very exciting target! The detailed observations of its exocomets give us clues to help understand what processes occur in this kind of young planetary system.”

For almost 30 years astronomers have seen subtle changes in the light from Beta Pictoris that were thought to be caused by the passage of comets in front of the star itself. Comets are small bodies of a few kilometres in size, but they are rich in ices, which evaporate when they approach their star, producing gigantic tails of gas and dust that can absorb some of the light passing through them. The dim light from the exocomets is swamped by the light of the brilliant star so they cannot be imaged directly from Earth.

To study the Beta Pictoris exocomets, the team analysed more than 1000 observations obtained between 2003 and 2011 with the HARPS instrument on the ESO 3.6-metre telescope at the La Silla Observatory in Chile.

The researchers selected a sample of 493 different exocomets. Some exocomets were observed several times and for a few hours. Careful analysis provided measurements of the speed and the size of the gas clouds. Some of the orbital properties of each of these exocomets, such as the shape and the orientation of the orbit and the distance to the star, could also be deduced.

This analysis of several hundreds of exocomets in a single exo-planetary system is unique. It revealed the presence of two distinct families of exocomets: one family of old exocomets whose orbits are controlled by a massive planet [1], and another family, probably arising from the recent breakdown of one or a few bigger objects. Different families of comets also exist in the Solar System.

The exocomets of the first family have a variety of orbits and show a rather weak activity with low production rates of gas and dust. This suggests that these comets have exhausted their supplies of ices during their multiple passages close to Beta Pictoris [2].

The exocomets of the second family are much more active and are also on nearly identical orbits [3]. This suggests that the members of the second family all arise from the same origin: probably the breakdown of a larger object whose fragments are on an orbit grazing the star Beta Pictoris.

Flavien Kiefer concludes: “For the first time a statistical study has determined the physics and orbits for a large number of exocomets. This work provides a remarkable look at the mechanisms that were at work in the Solar System just after its formation 4.5 billion years ago.”

Notes

[1] A giant planet, Beta Pictoris b, has also been discovered in orbit at about a billion kilometres from the star and studied using high resolution images obtained with adaptive optics.

[2] Moreover, the orbits of these comets (eccentricity and orientation) are exactly as predicted for comets trapped inorbital resonance with a massive planet. The properties of the comets of the first family show that this planet in resonance must be at about 700 million kilometres from the star  — close to where the planet Beta Pictoris b was discovered.

[3] This makes them similar to the comets of the Kreutz family in the Solar System, or the fragments of Comet Shoemaker-Levy 9, which impacted Jupiter in July 1994.

Source: ESO