Tag Archives: hope

ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior.
Credit:EPFL

Entering 2016 with new hope

Syed Faisal ur Rahman


 

Year 2015 left many good and bad memories for many of us. On one hand we saw more wars, terrorist attacks and political confrontations, and on the other hand we saw humanity raising voices for peace, sheltering refugees and joining hands to confront the climate change.

In science, we saw first ever photograph of light as both wave and particle. We also saw some serious development in machine learning, data sciences and artificial intelligence areas with some voices raising caution about the takeover of AI over humanity and issues related to privacy. The big question of energy and climate change remained a key point of  discussion in scientific and political circles. The biggest break through came near the end of the year with Paris deal during COP21.

The deal involving around 200 countries represent a true spirit of humanity to limit global warming below 2C and commitments for striving to keep temperatures at above 1.5C pre-industrial levels. This truly global commitment also served in bringing rival countries to sit together for a common cause to save humanity from self destruction. I hope the spirit will continue in other areas of common interest as well.

This spectacular view from the NASA/ESA Hubble Space Telescope shows the rich galaxy cluster Abell 1689. The huge concentration of mass bends light coming from more distant objects and can increase their total apparent brightness and make them visible. One such object, A1689-zD1, is located in the box — although it is still so faint that it is barely seen in this picture. New observations with ALMA and ESO’s VLT have revealed that this object is a dusty galaxy seen when the Universe was just 700 million years old. Credit: NASA; ESA; L. Bradley (Johns Hopkins University); R. Bouwens (University of California, Santa Cruz); H. Ford (Johns Hopkins University); and G. Illingworth (University of California, Santa Cruz)
This spectacular view from the NASA/ESA Hubble Space Telescope shows the rich galaxy cluster Abell 1689. The huge concentration of mass bends light coming from more distant objects and can increase their total apparent brightness and make them visible. One such object, A1689-zD1, is located in the box — although it is still so faint that it is barely seen in this picture.
New observations with ALMA and ESO’s VLT have revealed that this object is a dusty galaxy seen when the Universe was just 700 million years old.
Credit:
NASA; ESA; L. Bradley (Johns Hopkins University); R. Bouwens (University of California, Santa Cruz); H. Ford (Johns Hopkins University); and G. Illingworth (University of California, Santa Cruz)

Space Sciences also saw some enormous advancements with New Horizon sending photographs from Pluto, SpaceX successfully landed the reusable Falcon 9 rocket back after a successful launch and we also saw the discovery of the largest regular formation in the Universe,by Prof Lajos Balazs, which is a ring of nine galaxies 7 billion light years away and 5 billion light years wide covering a third of our sky.We also learnt this year that Mars once had more water than Earth’s Arctic Ocean. NASA later confirmed the evidence that water flows on the surface of Mars. The announcement led to some interesting insight into the atmospheric studies and history of the red planet.

In the researchers' new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment. Illustration: Jose-Luis Olivares/MIT
In the researchers’ new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment.
Illustration: Jose-Luis Olivares/MIT

We also saw some encouraging advancements in neurosciences where we saw MIT’s researchers  developing a technique allowing direct stimulation of neurons, which could be an effective treatment for a variety of neurological diseases, without the need for implants or external connections. We also saw researchers reactivating neuro-plasticity in older mice, restoring their brains to a younger state and we also saw some good progress in combating Alzheimer’s diseases.

Quantum physics again stayed as a key area of scientific advancements. Quantu

ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior. Credit:EPFL
ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior.
Credit:EPFL

m computing is getting more closer to become a viable alternative to current architecture. The packing of the single-photon detectors on an optical chip is a crucial step toward quantum-computational circuits. Researchers at the Australian National University (ANU)  performed experiment to prove that reality does not exist until it is measured.

There are many other areas where science and technology reached new heights and will hopefully continue to do so in the year 2016. I hope these advancements will not only help us in growing economically but also help us in becoming better human beings and a better society.