Tag Archives: kaust

Fully experimental image of a nanoscaled and ultrafast optical rogue wave retrieved by Near-field Scanning Optical Microscope (NSOM). The flow lines visible in the image represent the direction of light energy. 
Credit: KAUST

Tsunami on demand: the power to harness catastrophic events

A new study published in Nature Physics features a nano-optical chip that makes possible generating and controlling nanoscale rogue waves. The innovative chip was developed by an international team of physicists, led by Andrea Fratalocchi from KAUST (Saudi Arabia), and is expected to have significant applications for energy research and environmental safety.

Can you imagine how much energy is in a tsunami wave, or in a tornado? Energy is all around us, but mainly contained in a quiet state. But there are moments in time when large amounts of energy build up spontaneously and create rare phenomena on a potentially disastrous scale. How these events occur, in many cases, is still a mystery.

To reveal the natural mechanisms behind such high-energy phenomena, Andrea Fratalocchi, assistant professor in the Computer, Electrical and Mathematical Science and Engineering Division of King Abdullah University of Science and Technology (KAUST), led a team of researchers from Saudi Arabia and three European universities and research centers to understand the dynamics of such destructive events and control their formation in new optical chips, which can open various technological applications. The results and implications of this study are published in the journal Nature Physics.

“I have always been fascinated by the unpredictability of nature,” Fratalocchi said. “And I believe that understanding this complexity is the next frontier that will open cutting edge pathways in science and offer novel applications in a variety of areas.”

Fratalocchi’s team began their research by developing new theoretical ideas to explain the formation of rare energetic natural events such as rogue waves — large surface waves that develop spontaneously in deep water and represent a potential risk for vessels and open-ocean oil platforms.”

“Our idea was something never tested before,” Fratalocchi continued. “We wanted to demonstrate that small perturbations of a chaotic sea of interacting waves could, contrary to intuition, control the formation of rare events of exceptional amplitude.”

Fully experimental image of a nanoscaled and ultrafast optical rogue wave retrieved by Near-field Scanning Optical Microscope (NSOM). The flow lines visible in the image represent the direction of light energy.  Credit: KAUST
Fully experimental image of a nanoscaled and ultrafast optical rogue wave retrieved by Near-field Scanning Optical Microscope (NSOM). The flow lines visible in the image represent the direction of light energy.
Credit: KAUST

A planar photonic crystal chip, fabricated at the University of St. Andrews and tested at the FOM institute AMOLF in the Amsterdam Science Park, was used to generate ultrafast (163 fs long) and subwavelength (203 nm wide) nanoscale rogue waves, proving that Fratalocchi’s theory was correct. The newly developed photonic chip offered an exceptional level of controllability over these rare events.

Thomas F. Krauss, head of the Photonics Group and Nanocentre Cleanroom at the University of York, UK, was involved in the development of the experiment and the analysis of the data. He shared, “By realizing a sea of interacting waves on a photonic chip, we were able study the formation of rare high energy events in a controlled environment. We noted that these events only happened when some sets of waves were missing, which is one of the key insights our study.”

Kobus Kuipers, head of nanophotonics at FOM institute AMOLF, NL, who was involved in the experimental visualization of the rogue waves, was fascinated by their dynamics: “We have developed a microscope that allows us to visualize optical behavior at the nanoscale. Unlike conventional wave behavior, it was remarkable to see the rogue waves suddenly appear, seemingly out of nowhere, and then disappear again…as if they had never been there.”

Andrea Di Falco, leader of the Synthetic Optics group at the University of St. Andrews said, “The advantage of using light confined in an optical chip is that we can control very carefully how the energy in a chaotic system is dissipated, giving rise to these rare and extreme events. It is as if we were able to produce a determined amount of waves of unusual height in a small lake, just by accurately landscaping its coasts and controlling the size and number of its emissaries.”

The outcomes of this project offer leading edge technological applications in energy research, high speed communication and in disaster preparedness.

Fratalocchi and the team believe their research represents a major milestone for KAUST and for the field. “This discovery can change once and for all the way we look at catastrophic events,” concludes Fratalocchi, “opening new perspectives in preventing their destructive appearance on large scales, or using their unique power for ideating new applications at the nanoscale.”The title of the Nature Physics paper is “Triggering extreme events at the nanoscale in photonic seas.” The paper is accessible on the Nature Photonics website: http://dx.doi.org/10.1038/nphys3263

Source : KAUST News

This map of Turkey shows the artists' interpretation of the North Anatolian Fault (blue line) and the possible site of an earthquake (white lines) that could strike beneath the Sea of Marmara.

Image: NASA, and Christine Daniloff and Jose-Luis Olivares/MIT

Groundwater composition as potential precursor to earthquakes

By Meres J. Weche


 

The world experiences over 13,000 earthquakes per year reaching a Richter magnitude of 4.0 or greater. But what if there was a way to predict these oft-deadly earthquakes and, through a reliable process, mitigate loss of life and damage to vital urban infrastructures?

Earthquake prediction is the “holy grail” of geophysics, says KAUST’s Dr. Sigurjón Jónsson, Associate Professor of Earth Science and Engineering and Principal Investigator of the Crustal Deformation and InSAR Group. But after some initial optimism among scientists in the 1970′s about the reality of predicting earthquakes, ushered in by the successful prediction within hours of a major earthquake in China in 1975, several failed predictions have since then moved the pendulum towards skepticism from the 1990′s onwards.

This map of Turkey shows the artists' interpretation of the North Anatolian Fault (blue line) and the possible site of an earthquake (white lines) that could strike beneath the Sea of Marmara. Image: NASA, and Christine Daniloff and Jose-Luis Olivares/MIT
This map of Turkey shows the artists’ interpretation of the North Anatolian Fault (blue line) and the possible site of an earthquake (white lines) that could strike beneath the Sea of Marmara.
Image: NASA, and Christine Daniloff and Jose-Luis Olivares/MIT

In a study recently published in Nature Geoscience by a group of Icelandic and Swedish researchers, including Prof. Sigurjón Jónsson, an interesting correlation was established between two earthquakes greater than magnitude 5 in North Iceland, in 2012 and 2013, and the observed changing chemical composition of area groundwater prior to these tectonic events. The changes included variations in dissolved element concentrations and fluctuations in the proportion of stable isotopes of oxygen and hydrogen.

Can We Really Predict Earthquakes?

The basic common denominator guiding scientists and general observers investigating the predictability of earthquakes is the detection of these noticeable changes before seismic events. Some of these observable precursors are changes in groundwater level, radon gas sometimes coming out from the ground, smaller quakes called foreshocks, and even strange behavior by some animals before large earthquakes.

There are essentially three prevailing schools of thought in earthquake prediction among scientists. There’s a first group of scientists who believe that earthquake prediction is achievable but we simply don’t yet know how to do it reliably. They believe that we may, at some point in the future, be able to give short-term predictions.

Then there’s another class of scientists who believe that we will never be able to predict earthquakes. Their philosophy is that the exact start of earthquakes is simply randomly occurring and that the best thing we can do is to retrofit our houses and make probability forecasts — but no short-term warnings.

The last group, which currently represents a minority of scientists who are not often taken seriously, believes that earthquakes are indeed predictable and that we have the tools to do it.

Following the wave of optimism in the ’70s and ’80s, the interest and confidence of scientists in predicting earthquakes have generally subsided, along with the funding. Scientists now tend to focus mainly on understanding the physics behind earthquakes. As Prof. Jónsson summarizes:

“From geology and from earthquake occurrence today we can more or less see where in the world we have large earthquakes and where we have areas which are relatively safe. Although we cannot make short-term predictions we can make what we call forecasts. We can give probabilities. But short-term predictions are not achievable and may never be. We will see.”

The Message from the Earth’s Cracking Crust

Iceland was an ideal location to conduct the collaborative study undertaken by the scientists from Akureyri University, the University of Iceland, Landsvirkjun (the National Power Company of Iceland), the University of Stockholm, the University of Gothenburg and Karolinska Institutet in Stockholm, and KAUST.

“Iceland is a good testing ground because, geologically speaking, it’s very active. It has erupting volcanoes and it has large earthquakes also happening relatively often compared to many other places. And these areas that are active are relatively accessible,” said Prof. Jónsson.

The team of researchers monitored the chemistry, temperature and pressure in a few water wells in north Iceland for a period of five years more or less continuously. “They have been doing this to form an understanding of the variability of these chemical compounds in the wells; and then possibly associate significant changes to tectonic or major events,” he adds.

Through the five-year data collection period, which began in 2008, they were able to detect perceptible changes in the aquifer system as much as four to six months prior to the two recorded earthquakes: one of a magnitude 5.6 in October 2012 and a second one of magnitude 5.5 in April 2013. Their main observation was that the proportion of young local precipitation water in the geothermal water increased – in proportion to water that fell as rain thousands of years ago (aquifer systems are typically a mix of these two). At the same time, alterations were evident in the dissolved chemicals like sodium, calcium and silicon during that precursor period. Interestingly, the proportion went back to its previous state about three months after the quakes.

While the scientists are cautioning that this is not a confirmation that earthquake predictions are now feasible, the observations are promising and worthy of further investigation involving more exhaustive monitoring in additional locations. But, statistically speaking, it would be very difficult to disassociate these changes in the groundwater chemical composition from the two earthquakes.

The reason why a change in the ratio between old and new water in the aquifer system is important is because it points to the development of small fractures from the build-up of stress on the rocks before an earthquake. So the new rainwater seeps through the newly formed cracks, or microfracturing, in the rocky soil. Prof. Sigurjón Jónsson illustrates this as follows:

“It’s similar to when you take a piece of wood and you start to bend it. At some point before it snaps it starts to crack a little; and then poof it snaps. Something similar might be happening in the earth. Meaning that just before an earthquake happens, if you start to have a lot of micro-fracturing you will have water having an easier time to move around in the rocks.”

The team will be presenting their findings at the American Geophysical Union (AGU) meeting in San Francisco in December 2014. “It will be interesting to see the reaction there,” said Prof. Jónsson

Source: KAUST News

Sustaining Saudi Arabia’s reefs for the future

By Meres J. Weche


 

“About 150 kilometers of Jeddah’s coastline has become useless for sea creatures. If the level of pollution is not controlled or treated then the Kingdom will soon have to import fish and shrimps to meet its demands,” warned Dr. Ahmad Ashour from the Presidency of Meteorology and Environment Protection (PMEP), when speaking to local Saudi media in the past year.

Marine ecological environments, where all kinds of sea creatures, corals, fish and algae evolve, require healthy interactions between the natural habitat and influences from human environments in order to thrive. “What we’ve learned over the past few years is that the reef systems around the Saudi coast are not immune to the global stressors that are affecting reefs all over the planet,” said Dr. Michael Berumen, Associate Professor ofMarine Science at KAUST.

As highlighted in a recent KAUST article focusing on surveying work from the Director of the Red Sea Research Center, Prof. Xabier Igigoien, a major human-induced stressor is pollution – mainly from plastics making their way into the oceans of the world. Another factor are the globally increasing temperatures and the resulting problems from decreasing ocean pH and ocean acidification. So in addition to global problems affecting the coral reef systems, there are also locally specific challenges to be tackled.

For his part, Prof. Michael Berumen believes that another major locally influenced factor that needs to be observed in overfishing. “There’s too many fish in the fish markets and not enough fish in the reefs,” as he deplores. “There’s an imbalance that requires a closer look at promoting sustainable fishing practices.”

Where Have All the Big Fish Gone?

Saudi Arabia is fortunate to have enormous systems of reefs, a large reef habitat and a huge coastline with healthy reefs. Moreover, the relatively low population level along the Red Sea coast, apart from a few large urban areas would, generally speaking, minimize negative human impacts on the marine ecology. Also, the fact that there are no big river systems flowing into the Red Sea makes this maritime environment very unique.

The latter point is significant because in most places in the world, where lands are transformed by farming, intensive agricultural practices introduce all kinds of chemicals, pesticides and fertilizers — which change the composition of the land. When there’s a big rainstorm, or wet season, all this altered soil gets dumped into the sea. This is not a problem that exists in Saudi Arabia.

This is why when Prof. Michael Berumen and a team of reef experts from Australia and the US-based Woods Hole Oceanographic Institution first started diving in the Red Sea along the Saudi coast about seven years ago, they were surprised with what they observed. As Berumen recalls:

“On our very first trip we were on a boat that went from Yanbu to Jeddah, so including the reefs here in Thuwal. We cruised southwards and every few kilometers we were stopping and surveying a reef. It really was within about 3 or 4 dives that we all started saying that something was missing here. The reefs looked great but we were missing those top predators. They were just not there. ‘Where are they?’ we asked. Where are all the sharks that we should be seeing?”

Through KAUST’s partnership with the Woods Hole Oceanographic Institution, a team began a project to look into fishing pressures. They sought to understand why it was that directly across the Red Sea, on the Sudanese coast, other expeditions observed the presence of far more big fish.

“There are sharks on almost all the dives in the Sudan; there are big groupers, big jacks, and big snappers. There are all these big top predator fish which we notably don’t have here. It’s indeed very rare to see sharks and big groupers or big snappers on the Saudi reefs,” as Prof. Berumen explained.

What the Woods Hole surveying team found, partially using data from the fisheries department within the Saudi Ministry of Agriculture, was that “most species of fish have more or less collapsed as a fishery even as many as two or three decades ago.”

Prof. Berumen estimates that there are between 8,000-10,000 fishing boats, which practice what he characterizes as “artisanal industrial fishing,” operating along the Saudi coast.

While this doesn’t involve big industrial fishing fleets as one would normally think of when considering commercial fishing, the sheer numbers of these fishermen collectively exert as much pressure on the fisheries as industrial fishing. They’re basically using hand lines, single lines, some nets and maybe some traps; but the constant fishing has a severe impact.

“I don’t think there are any reefs in this region — even on the furthest offshore reefs that we’ve gone to here — where we didn’t regularly see fishing boats. So I think fishing pressure all through here is fairly homogenous,” said Berumen.

The Role of Education for Conservation Efforts

In addition to overfishing, the other major stressor to the Red Sea coastal reefs and marine ecology is again caused by widespread pollution. “When you drive to Thuwal from Jeddah, what do you see? A forest of plastic bags; and so much of that plastic ends up in the sea,” said Prof. Berumen. The problem isn’t just limited to the vicinities of large urban agglomerations. In fact, plastic remnants can be found across the Saudi coast. “Plastic is going to be a major challenge for us for decades and decades to come,” he adds.

Even in remote areas such as between the Farasan Islands and Al-Lith, which Michael Berumen calls “Saudi Arabia’s Great Barrier Reef” and where there are hundreds of really nice reefs, the problem can be observed. “It’s far away from big cities but it doesn’t matter. The islands in that region have got lots of trash and plastics,” explains Berumen. “The little fish that are migrating up and down are probably eating a lot of that plastic.”

The presence of KAUST and its Red Sea Research Center over the past few years has been instrumental in conducting important surveying and research work to tackle those twin problems of pollution and overfishing that are having a devastating effect on the Red Sea’s marine ecology environment.

But Prof. Berumen is quick to point out that it’s out of KAUST’s scope, or mission, to advocate for the enforcement of fishing regulations. The valuable research and surveying work being done on the Red Sea’s marine life by KAUST marine scientists can nonetheless serve as a valuable benchmark in the event that relevant authorities sought to institute such regulations. Examples would be restrictions on maximum or minimum fish size, daily catch amount limits, seasonal closures, and restricted fishing locations. So KAUST is already well positioned to consult government bodies on devising conservation strategies.

“What we should be, and are, doing is to collect the data. When and if we’re ever asked for it we are ready to provide scientifically sound reasoning for specific policies or changes in practices. We won’t need to ask the regulators to come back in five years for results,” as Berumen explained.

What KAUST is actively committed to doing however is to educate the public about the importance of marine ecology conservation. Outlining this goal, Prof. Berumen says:

“One of the things that I think we as a center and a university have to try to address is that education gap. There’s an old conservation saying that if you don’t know what you’ve got, it’s impossible to care about it. If you don’t even know it’s there it’s really hard to be concerned about it.”

One good example of a very positive sign which Prof. Berumen points to in the last couple of years has been the successful opening of the Fakieh Aquarium along Jeddah’s Corniche. A first of its kind in the Kingdom, the aquarium “promotes the conservation of the environment by spreading awareness through education and entertainment.”

The aquarium welcomes thousands of visitors per week. “That’s great because I know it’s happening,” said Berumen. “I’ve been there and I’ve watched the people come in and say: ‘Really? We have this literally a hundred meters away? If I jumped out into the water off the Corniche I would see these things?”

Prof. Berumen believes that this is the exposure that has been missing. “People were not exposed to what they had in their own backyard,” he said. He observes the same reaction when taking local Jeddah residents snorkeling for the first time. “So I’m optimistic that there are steps in the right direction and eventually there’ll be a sea change, as it were, in the public attitude toward conservation.”

Source: KAUST News

The complete electronic sensor, which weighs only 1.8 grams, is imbedded in the cube, and a 3D antenna is positioned around it. Photo credit:  Muhammad Fahad Faroouqi

KAUST research pioneers smart sensors for better and safer living

Atif Shamim and Christian Claudel, KAUST Assistant Professors of Electrical Engineering, work together on creating wireless sensor networks for “smart cities.” It is technology Prof. Shamim describes as “game changing…It will change the way we do many things in our lives, moving us towards smarter living,” he said.

In the “smart cities” of the future, electronic devices and objects will be “smart,” with objects containing sensors that communicate with each other, fixed network nodes and central servers. These sensors are connected through the Internet of things (IOT), which enables them to share information. Intelligent systems at the central servers are then used to analyze and process the data from the sensors.

The complete electronic sensor, which weighs only 1.8 grams, is imbedded in the cube, and a 3D antenna is positioned around it. Photo credit:  Muhammad Fahad Faroouqi
The complete electronic sensor, which weighs only 1.8 grams, is imbedded in the cube, and a 3D antenna is positioned around it. Photo credit: Muhammad Fahad Faroouqi

“The critical component for these processes is low-cost wireless sensing modules,” explained Prof. Shamim. “Fixed sensor nodes are useful, but for these you need a lot of infrastructure, such as towers and assemblies. Our idea is that you would have some fixed sensors, but you would disperse many small, mobile sensors that communicate wirelessly to the fixed sensors, which then communicate all the received information to a central station for analysis.”

COLLABORATING FOR SMART PROGRESS

The use of small, mobile sensors reduces the cost of the infrastructure tremendously, noted Prof. Shamim, and also enables information to be gathered from remote locations where it is difficult or impossible to mount fixed sensors, such as in forests or deserts.

Together, the research groups of Prof. Shamim and Prof. Claudel combined their respective talents and expertise to make progress in using wireless sensors for flood monitoring. This issue is of high importance to Saudi Arabia and cities such as Jeddah, which saw a 2009 catastrophic flood claim the lives of hundreds and cause considerable property damage.

“Classical sensing solutions, such as fixed wireless sensor networks or satellite imagery, are too expensive or too inaccurate to detect floods – and in particular flash floods – well,” noted Prof. Claudel. “Instead, we tested the use of Unmanned Aerial Vehicles (UAVs) equipped with mobile, floatable, 3D printed microsensors and sensor delivery systems to sense and monitor flash flooding events.”

This new system of mobile, floatable sensing, called Lagrangian sensing, “is very promising for large scale sensing, or on-demand sensing, as it requires minimal infrastructure,” the researchers stated. Using this method, UAVs drop the small, disposable wireless sensors over an area to be monitored. The sensors float, so they are carried away by the water flow of the flood. As they move along in the water, they send signals to the UAVs. These signals map the extent of the flood, and this information is transmitted to a central, fixed station for processing. It can then be used to warn the public and other authorities about the extent of the flood.

“Prof. Claudel carries out the systems level design and implementation for the research project, and my group develops the actual physical sensors,” said Prof. Shamim. “In that way, I believe we are a very good fit for collaboration.”

Their collaboration produced a paper recently published in IEEE Transactions on Antennas & Propagation, entitled “An Inkjet-Printed Buoyant 3-D Lagrangian Sensor for Real-Time Flood Monitoring” (DOI: 10.1109/TAP.2014.2309957). KAUST has applied for patent protection for this and other related technologies.

DEVELOPING LOW-COST SOLUTIONS

One of the challenges Profs. Claudel and Shamim and their teams faced in the research work was designing the sensors. “We wanted to make them low-cost so they are basically disposable,” explained Prof. Shamim. “We use inkjet printers to print electronics on paper and plastics, but in this case we used paper, as it is lightweight, 1/10th the cost of plastic, and is very suitable for inkjet printing. In addition, it is biodegradable and comes from a renewable resource.”

The researchers produced a small paper cube with a size of 13 mm x 13 mm x 13 mm. The complete electronic sensor, which weighs only 1.8 grams, is imbedded in the cube, and a 3D antenna is positioned around it, enabling the cube to give a signal in any direction it is moving (or floating).

“Because we were working on a flood monitoring application, we had to optimize the sensor to work in water as well as in air,” Prof. Shamim noted. “We were skeptical about its performance in water, so we sealed it with a special glue. We then produced a cube that is very small, lightweight, floats in water, and is electrically sealed. It works very well in water and radiates up to 50 meters in all directions. The performance was better than we expected.”

The technology has many other possible applications: “You could integrate sensors for ammonia, sulfur, carbon monoxide, humidity, or temperature into the cube,” said Prof. Shamim. “This would allow for detection of poisonous gases and other environmental conditions, which would be especially helpful in industrial settings and in remote locations, such as during forest fire events.”

Profs. Shamim and Claudel want to integrate their low-cost, printable, and disposable microsensor technology into the day-to-day lives of everyday people. Not only would the technology enable greater safety for individuals during catastrophic events such as floods, but it could also assist in locating cars in busy parking lots, tracking expired foods in supermarkets, and in creating smart houses, where household appliances and electronic lock systems “talk” to each other to make sure they are in proper working order.

“I believe this technology will change the way people live, shop, and monitor things,” said Prof. Shamim. “We will have better living, from our homes to our offices to our industries – and that is a benefit for all.”

Sourse: KAUST

KAUST team synthesizes novel metal-organic framework for efficient CO2 removal

By Caitlin Clark

“In Professor Mohamed Eddaoudi’s research group, we are always on the quest to find novel nanostructured functionalized materialsfor specific applications,” explained KAUST Research Scientist Dr. Youssef Belmabkhout, a member of Prof. Eddaoudi’s Functional Materials Design, Discovery, and Development (FMD3) group, part of KAUST’s Advanced Membranes and Porous Materials (AMPM) research center.

Dr. Osama Shekhah, Senior Research Scientist in the FMD3 group added that the group searches “for materials that will be highly suitable for trace and low CO2 concentration removal using purely physical adsorption. These will help in energy saving and in the reduction of the cost of the production, purification, and enrichment of highly valuable commodities such as CH4, H2, O2, N2, and others.”

Drs. Shekhah and Belmabkhout and a team of researchers from Prof. Eddaoudi’s group recently discovered and synthesized a new porous, moisture-resistant, inexpensive and reusable copper-based metal-organic framework (MOF) called SIFSIX-3-Cu that can selectively adsorb and remove trace CO2 from mixtures of various gases. Their findings were published in the June 25 edition of Nature Communications (DOI: 10.1038/ncomms5228).

MOFs are a promising new class of hybrid solid-state materials for CO2 removal. “Their uniqueness,” explained Prof. Eddaoudi, “resides in the ability to control their assembly and introduce functionality on demand. This feature is not readily available in other solid-state materials.”

The researchers showed for the first time that MOF crystal chemistry permits the assembly of a new isostructural hexafluorosilicate MOF (SIFSIX-3-Cu) based on copper instead of zinc.

“This technology is anticipated to outperform the existing mature technologies for CO2 physical adsorption in terms of energy efficiency,” says Dr. Shekhah. “The key factors for this finding are the combination of suitable pore size and high, uniform charge density in the pores of the MOF.”

Using their newly synthesized MOF, the researchers examined the conditions relevant to direct air capture (DAC), a mechanism to remove CO2 from air and reduce greenhouse gas emissions uniformly around the world.

DAC is more challenging than post-combustion capture, but it may be practical if alternative “suitable adsorbent combining optimum uptake, kinetics, energetics and CO2 selectivity is available at trace CO2 concentration,” the researchers stated.

The team discovered that contracting SIFSIX-3-Cu’s pore system to 3.5 Å enhanced the material’s efficiency, making it able to adsorb relatively large CO2 amounts 10-15 times higher than zinc-based metal-organic adsorbents, such as SIFSIX-3-Zn. In SIFSIX-3-Zn, the pore size is 3.84 Å.

“We attribute this property to enhanced physical sorption through the favorable electrostatic interactions between CO2 molecules and fluorine atoms present on the surface of the adsorbent,” explained Zhijie Chen, a Ph.D. student in the FMD3 group and a co-author of the paper.

Dr. Vincent Guillerm, a post-doctoral fellow in the FMD3 group and a co-author of the paper also noted that, “the pore contraction gives CO2 uptake and selectivity at very low partial pressures. This is relevant to DAC and trace carbon dioxide removal.”

“SIFSIX-3-Cu gives enhanced CO2 physical adsorption properties, uptake, and selectivity in highly diluted gas streams, and this performance is unachievable with other classes of porous materials,” added Dr. Karim Adil, a co-author of the paper and Research Scientist in the FMD3 group.

The researchers are excited about their finding as it offers the potential to be used not only for DAC but also for other applications related to energy, the environment, and the healthcare field. For example, SIFSIX-3-Cu could be used to remove and recycle CO2 in confined spaces, such as in submarines or space shuttles, and could also be used in anesthesia machines, which require efficient CO2 sorbents.

“Our work paves the way for scientists to develop new separation agents suitable for challenging endeavor pertaining to CO2 ultra-purification processing,” said Dr. Shekhah. “Our study is also part of a greater critical effort to develop economical and practical pathways to reduce cumulative CO2 emissions provoking the undesirable greenhouse gas effect.”

Prof. Eddaoudi reiterated that “MOFs offer remarkable CO2 physical adsorption attributes in highly diluted gas streams thanks to their ability for rational pore size modification and inorganic-organics moieties substitution. Other classes of plain materials are unable to attain this.”

In the future, Prof. Eddaoudi’s FMD3 group will continue to develop topologically and chemically different MOFs. “We aim to target novel MOFs with suitable pore size and high charge density,” explained Prof. Eddaoudi. “We will then use these for the important task of removing trace and low and high concentration CO2.”

Source: KAUST


 

Computerized model showing simulation of the city of Jeddah under flooding conditions. The cloudy sky indicates the spatial distribution of the amount of rain over Jeddah. Credit: KAUST

KAUST scientists developing models to predict extreme events

As KAUST celebrates its five-year anniversary, the community has a plethora of milestones to celebrate, not to mention more than a few memorable events to look back on. Interestingly, one of these noteworthy events, in the form of an unforeseen natural occurrence, still serves as the basis for ongoing interdisciplinary research at the University. Shortly following KAUST’s Inauguration, on November 25, 2009, over 140 millimeters of rain fell over the Jeddah region within a mere eight hours, causing in excess of 100 fatalities and resulting in an economic setback of over $100M.

“All this rain coming at the same time, in a matter of few hours, meant the water had nowhere to go; so it went into the streets,” said KAUST’s Ibrahim Hoteit, Associate Professor of Earth Sciences and Engineering and Principal Investigator of the Earth Fluid Modeling and Prediction group. Flash floods present a particular challenge in arid areas with limited sewage systems.

Computerized model showing simulation of the city of Jeddah under flooding conditions. The cloudy sky indicates the spatial distribution of the amount of rain over Jeddah. Credit: KAUST
Computerized model showing simulation of the city of Jeddah under flooding conditions. The cloudy sky indicates the spatial distribution of the amount of rain over Jeddah. Credit: KAUST

“The rain doesn’t get quickly absorbed in this region.” As Prof. Hoteit further explains: “We’re trying to reconstruct the rain event that happened during the 2009 and 2001 floods using modeling and observations.” As he emphasizes, “models predict the future data and the data guide the model toward the truth.”

He points to an impressive computerized model of Jeddah on his monitor, capturing over 20,000 buildings, complete with surrounding mountains and estimated paths taken by the water as it flooded the city.

Constructing Predictive Models for Jeddah Flooding

“In order to build a local model at the level of Jeddah, we downscale from global to regional MENA (Middle East & North Africa)-wide models all the way down to a few hundred meters over Jeddah,” as Hoteit outlines. To obtain the MENA region data, his team used data from satellites and international sources.

As they eventually zoomed in over the Jeddah region, the local data was provided by Presidency of Meteorology and Environment (PME) and the Jeddah Municipal government. The data collected is then used to complement and guide the atmospheric and weather models employed to forecast.

“Using all available observations and state-of-the-art weather forecasting models, our simulations suggest that we could predict these devastating extreme rain events one or two days in advance. So we can greatly improve the prediction of these events and issue timely warnings,” said Prof. Hoteit.

The rain is then used as input in developing very high-resolution models to simulate street flooding in the city of Jeddah.

It’s important to keep in mind that environmental fluid models are not perfect, and as such their outputs can be modeled as random variabilities with some distributions. “The question of how good or certain our forecast is dependent on a complex mathematical and computational problem. We strive to compute the best possible representation of the distribution of the system state given the models and available data.”

These sophisticated models, taking into account input and modeling uncertainties, are achieved through highly multidisciplinary work involving various teams at KAUST. Prof. Hoteit closely collaborates with KAUST’s Prof. Omar Knio, a world expert in the field of uncertainty quantification. He also relies heavily on collaborations with the high performance computing and visualization teams. “Visualization is very important for us as a way to communicate our scientific concepts to people and users,” explained Hoteit.

Ocean Modeling and the Impact of Sea Currents

In an effort to build forecasting models meant to predict extreme marine and weather events, Prof. Hoteit and his group also rely on ocean and atmospheric observations. For any environmental model to be effective, it’s important to complement it with actual data collected from the whole region and locally.

Working with data sets collected from Saudi Aramco, from PME, as well as from satellite data, KAUST was able to develop a 14-year reanalysis (from the years 2000 to 2014) of atmospheric conditions over the Red Sea at a 10-kilometer resolution – one of the highest and most accurate of its kind in the region.

As they eventually zoomed in over the Jeddah region, the local data was provided by Presidency of Meteorology and Environment (PME) and the Jeddah Municipal government. The data collected is then used to complement and guide the atmospheric and weather models employed to forecast.

“Using all available observations and state-of-the-art weather forecasting models, our simulations suggest that we could predict these devastating extreme rain events one or two days in advance. So we can greatly improve the prediction of these events and issue timely warnings,” said Prof. Hoteit.

The rain is then used as input in developing very high-resolution models to simulate street flooding in the city of Jeddah.

It’s important to keep in mind that environmental fluid models are not perfect, and as such their outputs can be modeled as random variabilities with some distributions. “The question of how good or certain our forecast is dependent on a complex mathematical and computational problem. We strive to compute the best possible representation of the distribution of the system state given the models and available data.”

These sophisticated models, taking into account input and modeling uncertainties, are achieved through highly multidisciplinary work involving various teams at KAUST. Prof. Hoteit closely collaborates with KAUST’s Prof. Omar Knio, a world expert in the field of uncertainty quantification. He also relies heavily on collaborations with the high performance computing and visualization teams. “Visualization is very important for us as a way to communicate our scientific concepts to people and users,” explained Hoteit.

Ocean Modeling and the Impact of Sea Currents

In an effort to build forecasting models meant to predict extreme marine and weather events, Prof. Hoteit and his group also rely on ocean and atmospheric observations. For any environmental model to be effective, it’s important to complement it with actual data collected from the whole region and locally.

Working with data sets collected from Saudi Aramco, from PME, as well as from satellite data, KAUST was able to develop a 14-year reanalysis (from the years 2000 to 2014) of atmospheric conditions over the Red Sea at a 10-kilometer resolution – one of the highest and most accurate of its kind in the region.

Source: KAUST

The NOMADD technology represents KAUST's first royalty-bearing license agreement. Credit: KAUST News

Innovation in the desert! KAUST’s NOMADD sets sights on solar energy future

The NOMADD technology represents KAUST’s first royalty-bearing license agreement.

By Meres J. Weche


The United Nations estimates the Saudi population will grow to 45 million by 2050; and as the population increases, domestic energy demand is anticipated to double by 2030. In recognition of the growing importance of developing sustainable and renewable energy sources for the Kingdom, the Saudi government has established the ambitious goal of generating a third of the country’s electricity sources (41,000 megawatts) through solar power by 2032. Towards this goal, the King Abdullah City for Atomic and Renewable Energy (KACARE) aims to construct a $109 billion solar industry in Saudi Arabia, which would represent about 20,000 football fields worth of solar panels.

“We hope to be the industry standard solution to clean all those panels,” said Georg Eitelhuber, Founder and Chief Executive Officer of NOMADD. The startup company, developed three years ago at KAUST and originally supported and funded by theEntrepreneurship Center and the Seed Fund program, offers a waterless and remotely operated system to clean solar panels. The acronym NOMADD stands for NO-water Mechanical Automated Dusting Device.

The NOMADD technology represents KAUST's first royalty-bearing license agreement. Credit: KAUST News
The NOMADD technology represents KAUST’s first royalty-bearing license agreement. Credit: KAUST News

Describing the challenges facing Saudi Arabia’s burgeoning solar energy industry, the NOMADD founder says: “The big challenge, is dust. Desert winds pick up the dust and push it onto the solar panels, all day every day. Sometimes you can have dust storms which put so much dust on the solar panel surface, you can lose 60% of your output in a single day.” Actually, solar panels lose between 0.4-0.8% of their efficiency per day just from desert sand and dust.

A mechanical engineer by training, Eitelhuber was working as a physics teacher at the KAUST School when he started experimenting with Lego blocks and paper to find a solution to clean solar panels exposed to the rough dusty environment of Saudi Arabia. His innovation has since been recognized with the 2014 Solar Pioneer Award and he has been working on further testing and developing the solution with world-leading companies in solar energy such as First Solar Inc. and SunPower Corp.

Eitelhuber is grateful for the backing of KAUST, with all of its resources, in assisting inventors like himself. As the NOMADD team works with various industrial testing partners on improving the technology, KAUST Tech Transfer is there to maintain control of patentable technology which may emerge in the process. A milestone was achieved last month when KAUST signed its first royalty-bearing license agreement for the NOMADD desert solar solution system.

A Continuous Drive for Improvement

Demonstrating the newly devised fifth version of the NOMADD system in its three years of development, Georg Eitelhuber explains that it’s now “70% lighter than previous versions and uses less than half of the power.” In addition to that, it’s much cheaper to manufacture.

“Every time we do a new version it’s simpler, cheaper and faster,” he adds. For example, the rail system supporting the brushes cleaning the solar panels from top to bottom is not only lighter and cheaper but it also now just clips on – whereas previous versions required many nuts and bolts. The mounting system moreover features an inbuilt self-adjustment process tailored to determine the optimal gravity-adjusted angle as the solar panels are cleaned.

It’s important for the cleaning system to be both economically and functionally optimized since some panel rows can be 400 meters long. “That’s a lot of rail,” said Eitelhuber.” “The old version had literally hundreds of nuts and bolts, little fasteners and washers and it worked great but it also weighted as much as a tank.”

Compared to some earlier models, which had around 120-odd manufacturing pieces, the latest NOMADD system has narrowed it down to 10 to 15 pieces. This means that it’s now easier to manufacture and assemble. “The key thing is that it has to be cheaper than sending out a worker with a squeegee and more economical than anything else in the market,” he adds.

The achieved objective has been to make NOMADD desert-proof – as the arid environment causes things to break down at higher frequencies. The device is basically machined aluminum and stainless steel.

It’s also noteworthy that the brushes used to non-abrasively clean the solar panels can easily be slid out and replaced. So it would take someone around five minutes to change all the brushes.

In addition, one of the major advantages of the NOMADD system is that it’s remotely operated. The cleaning functions can be monitored and operated online from around the world.

A Saudi-Specific Innovation with a Global Footprint

“The advantage that we’ve got is that we’ve basically been three years in development and we’ve been developing this solution for the desert while being in the desert. We’ve got a real understanding of the issues involved in cleaning solar panels in the desert,” said Georg Eitelhuber.

Unlike some other solar panel cleaning solutions from North American and European companies, designed for mild climates, that use water and require manual labor, the NOMADD system really has an edge by being a waterless model ideally suited for these arid conditions. “We understand that having someone standing outside at 45 degrees Celsius cleaning solar panels eight hours a day isn’t feasible,” he adds.

As they keep an eye out for the competition, the NOMADD team is confident that, once they make it through the final development process, they will have every chance of being a huge commercial success.

KAUST’s director of New Ventures and Entrepreneurship, Gordon McConnell, says NOMADD’s local presence in the Kingdom will help contribute in building a knowledge-based economy in Saudi Arabia. “The local incorporation is not just of bureaucratic significance, but will now enable NOMADD to develop its business which in turn will help to create high level jobs in sales, marketing and technical areas, while also offering an opportunity to build up local manufacturing capacity and it will make it easier for fund raising within the Kingdom,” said McConnell.

The NOMADD project has greatly benefited from the collaborative efforts of several key team members such as Guodong Li, Chief Electrical Engineer, and Elizabeth Cassell, the project’s chief Administrator, both from the KAUST Solar Center; as well as Head Mechanical Design Engineer Steven Schneider who has been instrumental in producing technical drawings for manufacturing. Andres Pablo, a Ph.D. student, and Razeen Stoffberg, one of Georg’s ex students front he KAUST school, have been assisting with technical setups and product testing and evaluation.

Also, as much of the manufacturing work is done in Asia, the NOMADD team has set up an office in Singapore, headed by Chief Development Officer Cliff Barrett. As a next step, the team has been actively recruiting a new CEO to help the project achieve critical mass and reach their ambitious future milestones.

“Thanks to some great mentorship from the KAUST New Ventures and Entrepreneurshipteam, I’ve done my best as a CEO but I’m an engineer and an inventor by nature,” said Georg Eitelhuber. “It’s been one of my dreams from the very beginning to try and start something which will have a net positive environmental and social impact.”

Source: KAUST News

Achieving agricultural sustainability through seawater

Even though our planet is called “Earth,” over 70% of its surface is composed of water. Our continued existence depends on this vital resource but it is a staggering fact that only 1% of that water is directly accessible for human use. That is mainly because about 98% of the world’s available water is salty. This means that merely “2% of the Earth’s water is fresh water; but half of it is frozen in the form of glaciers and icebergs,” as Mark Tester, Professor of Bioscience at KAUST and Principal Investigator of the Salt Lab, explains.

The scarcity of fresh water supplies, surface water found in lakes and rivers as well as underground sources, poses a major challenge in the face of a growing world population set to plateau at 9 billion people by 2050. Fresh water is an essential part of our agricultural production infrastructure required to feed ourselves. Indeed, no less than “70% of the water that we use on the planet is used for agriculture. Moreover, 40% of our food is produced under irrigation,” as Prof. Tester outlines.

Global climate change is compounding the problem of water scarcity by altering rainfall patterns, reducing rainfall in previously well watered regions. The already limited supply of fresh water is also increasingly affected by salinity. “It would be wonderful if we could unlock at least a fraction of the rest of the vast amount of the world’s water resources,” as Tester further posits.

“So, in the context of needing to produce 70% more food by 2050, we have to both stop the reduction of yield already suffered from brackish irrigation water, and also unlock some of the other 99% of the water that we’re not able to use at the moment. Both of these things call out for our ability to increase the salinity-tolerance of plants.”

Making Our Current Plants Better

Prof. Mark Tester and his group, as well as other KAUST faculty members’ groups, are actively conducting experimental research in the University’s well-equipped greenhouse to find solutions to tackle our expanding food security challenges.

“We need to raise our ability to increase food supply,” said Tester. “We need innovation in plant science, modern plant breeding (e.g. quantitative genetics) and genetic modification.”

Prof. Tester’s group is primarily focused on studying how salt-tolerant plants are able to survive in harsh environments and then using that knowledge to make less salt-tolerant plants grow better in difficult conditions.

“We are trying to improve plant yields in sub-optimal conditions – where the soil is salty or when the water used to irrigate the plants is salty,” as Prof. Tester clarifies. His group essentially looks at the “naturally occurring variability in plants.”

How are some plants naturally able to better grow in salty water while others are less able to thrive in saline conditions? “I want to know what genes are in those tough plants that are missing from the less tough plants,” said Tester.

A Greenhouse Like No Other

These efforts, combining the observation of naturally occurring variations, the discovery of characterizing genes, and the measuring of the salt tolerance of plants require that KAUST plant scientists be able to grow plants in a controlled environment. These tasks are performed in the KAUST Center for Desert Agriculture (CDA)’s high quality 1600-square-meter greenhouse.

Prof. Mark Tester pointed out a unique feature of the greenhouse: a seawater tank. “We can water plants with seawater in this greenhouse. That’s pretty unusual,” he exclaimed. The filtered seawater greatly facilitates salinity experiments.

Another particular feature of the CDA greenhouse, unique to it’s location in Saudi Arabia, is that the water is actually cooled as it arrives from the desalination plant. This is to prevent the water warming the roots of plants in the soil – roots are used to be in the cooler soil, and are particularly sensitive to being warmed.

Different Approaches to Tackling Abiotic Stress

Given the fact that a quarter of the food that we produce under irrigation is already affected by salinity, a number that is rising rapidly, finding effective ways to use seawater to grow plants is of primary importance.

Prof. Tester recognizes the value of research towards this common sustainable agriculture goal also being conducted by fellow KAUST faculty members such as Prof. Heribert Hirt, who looks at solutions to increase plants’ tolerance to drought and heat, and Prof. Magdy Mahfouz, whose research interests focus on genome-engineering across plant species.

“Together we form a package of different approaches. All the approaches are good. There’s no one right approach. One might be better than another for particular circumstances, but they can all make a valuable contribution to improving crop growth in tough conditions,” said Prof. Tester.

How Plant Science Can Improve Food Security

Among the plants being cultivated and studied in the CDA greenhouse are rice plants. Demonstrating some of the crops that have grown in this controlled environment, Prof. Tester points out how “this one species of rice feeds half of the planet. It’s really important because it feeds the poor half of the planet – mainly in Asia and Africa.”

Taking into account the vital importance of rice crops to continue feeding the world’s growing population, it’s particularly significant that rice plants, as most crop plants, are salt-sensitive. They are indeed easily negatively affected by high salinity.

So Prof. Mark Tester and his team are studying the more salt-tolerant crops, such as barley and tomatoes, in order to better understand how they tolerate salinity, and then use that knowledge to improve other vital crops for our increasing food demands.

For instance, his team is growing a particular type of tomatoes, found on the Galapagos Islands, which are amazingly able to grow right at the edge of the sea and flourish in saline water. “We’re trying to discover the genes that are in these Galapagos tomatoes that allow the plants to grow in these crazy tough conditions,” said Tester.

“We want to use that knowledge to make commercial tomatoes even tougher,” he adds. By extension, “we can then turn our attention to rice and potentially improve its salt-tolerance.”

Source : KAUST News

Imagine a city that thinks about your safety

Can a city be smart? The scientists and technology experts at KAUST certainly think so. They have been working on a number of smart solutions to help deal with issues like traffic congestion, water management, and urban flooding.

Raghid Shreih, a Technology Portfolio Manager at KAUST’s Technology, Transfer and Innovation Division (TTI), works with KAUST researchers to protect, manage and commercialize KAUST’s intellectual property portfolio. He’s been involved with evaluating many of the smart city systems developed at the University.

“The world’s urban population is growing very rapidly,” says Shreih, “and this is presenting a lot of new challenges for cities, particularly in terms of urban planning and infrastructure, public transit, traffic congestion and pollution. As cities become more densely populated, there is also the risk of severe weather incidents causing a lot of damage and casualties. KAUST researchers are developing solutions to address some of these problems.”

KAUST Video:Flood and Traffic Monitoring System

Our latest technology video explains the integrated sensor system for monitoring urban floods and traffic congestions.

One of these solutions is a dual-usage wireless sensor system that tracks traffic congestion and flood incidents in cities. Using a combination of ultrasonic range finders and infrared thermal sensors, the system can monitor traffic flow and roadway flooding, and can be deployed on a large urban scale to provide real-time, highly accurate data on current conditions.

“Because flash floods are extremely rare events, there is not really an incentive to deploy a dedicated infrastructure to address these problems,” said Prof. Christian Claudel, lead inventor of the system. “We wanted to have traffic sensors that would also be capable of detecting flash floods as a secondary application—therefore, the marginal cost of sensing flash floods is zero.”

With storms and floods accounting for nearly 70 percent of the world’s natural disasters, this smart technology can provide up-to-the-minute warnings and allow rapid response to emergency situations. The data collected from these sensors is sent to central servers for assimilation with satellite data, forming real-time maps and forecasting the future path, intensity, and speed of floods and traffic.

This is just one of the many smart systems developed at KAUST.

Shreih says, “The technology being developed at KAUST can be adopted by company and industry partners who will be able to integrate it within their systems and use it to build new infrastructure projects for the cities of the future.”

Source: KAUST

The art of translating science into business

“There are many things which can go wrong when starting a company; but the worst thing that can go wrong is to not do it,” said Prof. Karl Leo, Director of KAUST’s Solar & Photovoltaics Engineering Research Center, when speaking at an Entrepreneurship Center speaker series event this past spring. Wearing the dual hats of scientist and entrepreneur, Prof. Leo is the author of 440 publications, holds more than 50 patents, and has co-created 8 companies which have generated over 300 jobs.

A physicist by training, Prof. Leo highlighted the point that he is primarily a scientist who stumbled onto business by chance. “For me it’s always started with and been about the science,” he says. All his spin-off companies came about as a result of basic research he and his group conducted on organic semiconductors. Speaking specifically to the young KAUST researchers hoping to emulate his success as academics and entrepreneurs, Prof. Leo said: “The message I want to pass along is if you really want to do things, just be curious. Don’t say I want to do research to make a company. Do very basic research and the spin-off ideas will come along.”

The Growing Influence of Organic Semiconductors

Prof. Karl Leo started doing research on organic semiconductors about 20 years ago. He has since been passionate about this field’s developments and future potential. Despite his early skepticism resulting from the ephemeral lifetime of organic semiconductors in the ’90s, the performance levels of LED devices for instance have gone from just a few minutes of useful life then to virtually not aging today. “In the long-term, as in 20 to 30 years from now, almost everything will be organics,” he believes. “Silicon has dominated electronics for a long time but organic is something new.” Organic products have evolved into a variety of applications such as: small OLED displays, OLED televisions, OLED lighting, OPV and organic electronics.

Organics, as opposed to traditional silicon-based semiconductors, are by nature essentially lousy semiconductors. Mobility, or the speed at which electrons move on these materials, is a really important property. However, when looking at the electronic properties of semiconductors, carbon offers interesting developments for the performance of organics. For instance, graphene, which is a carbon-based organic material, has even higher mobility than silicon.

One of the companies Prof. Karl Leo co-founded and began operating out of Dresden, Germany in 2003, Novaled, became a leader in in organic light-emitting diode (OLED) field. OLEDs are made up of multiple thin layers of organic materials, known as OLED stacks. They essentially emit light when electricity is applied to them. Novaled became a pioneer in developing highly efficient and long-lifetime OLED structures; and it currently holds the world record in power efficiency. They key to Novaled’s success, as Prof. Leo explains, is “the simple discovery that you can dope organics.” This was a major breakthrough achieved simply adding a very little amount of another molecule.

This organic conductivity doping technology, used to enhance the performance of OLED devices, was the main factor leading to the company being purchased by Samsung in 2013.

Organic Photovoltaics: Technology of the Future

Following the successful commercial penetration of OLED displays in the consumer electronics market, Prof. Karl Leo has since turned his focus on organic photovoltaics. “I think organic PV is something that can change the world,” said Leo. Among the many advantages of organic photovoltaics are that they are thin organic layers which can be applied on flexible plastic substrates. They consume little energy, can be made transparent, and are compatible with low-cost large-area production technologies. Because they are transparent, they can be made into windows for instance, and also be manufactured in virtually any color. All these characteristics make organic PV ideal for consumer products.

Again based on basic research conducted by his group, Prof. Leo also started a company,Heliatek, which is now a world-leader in the production of organic solar film. Heliatek has developed the current world record in the efficiency of transparent solar cells. The company also holds the record for efficiency of opaque cells at 12 percent. Leo believes that it’s possible to achieve up to 20 percent efficiency in the near future, which will be necessary to compete with silicon and become commercially viable.

Don’t Believe Business Plans

Prof. Leo explained that the experience he and his team gained from launching a successful company like Novaled helped them to both define the objectives and obtain funding from investors for his solar cell company, Heliatek. “Once you create a successful company, things get much easier,” he said. But Leo also cautioned the budding entrepreneurs in the audience to be willing to adapt as they present and implement their ideas.

“If you have a good idea and you are convinced you have a good idea, never give up,” he said. But being able to adapt to market needs is also crucial. For instance, Leo’s original business plan for Novaled focused on manufacturing displays. But the realities of the market, and the prohibitive cost of manufacturing displays, convinced his team that the smarter way to go was to supply materials. At the end of the day, what really succeeded in getting a venture capital firm’s attention, after haven been told no 49 times, was his team’s ability to demonstrate the value of the technology.

“Business plans are useful but they must not be overestimated,” said Prof. Leo. Business plans are a good indicator of how entrepreneurs are able to structure their thoughts, identify markets and create a roadmap, but “nobody is able to predict the future in a business plan; it’s not possible.”

Source: KUST