Tag Archives: model

Quantum computer as detector shows space is not squeezed

 Robert Sanders


 

Ever since Einstein proposed his special theory of relativity in 1905, physics and cosmology have been based on the assumption that space looks the same in all directions – that it’s not squeezed in one direction relative to another.

A new experiment by UC Berkeley physicists used partially entangled atoms — identical to the qubits in a quantum computer — to demonstrate more precisely than ever before that this is true, to one part in a billion billion.

The classic experiment that inspired Albert Einstein was performed in Cleveland by Albert Michelson and Edward Morley in 1887 and disproved the existence of an “ether” permeating space through which light was thought to move like a wave through water. What it also proved, said Hartmut Häffner, a UC Berkeley assistant professor of physics, is that space is isotropic and that light travels at the same speed up, down and sideways.

“Michelson and Morley proved that space is not squeezed,” Häffner said. “This isotropy is fundamental to all physics, including the Standard Model of physics. If you take away isotropy, the whole Standard Model will collapse. That is why people are interested in testing this.”

The Standard Model of particle physics describes how all fundamental particles interact, and requires that all particles and fields be invariant under Lorentz transformations, and in particular that they behave the same no matter what direction they move.

Häffner and his team conducted an experiment analogous to the Michelson-Morley experiment, but with electrons instead of photons of light. In a vacuum chamber he and his colleagues isolated two calcium ions, partially entangled them as in a quantum computer, and then monitored the electron energies in the ions as Earth rotated over 24 hours.

As the Earth rotates every 24 hours, the orientation of the ions in the quantum computer/detector changes with respect to the Sun’s rest frame. If space were squeezed in one direction and not another, the energies of the electrons in the ions would have shifted with a 12-hour period. (Hartmut Haeffner image)
As the Earth rotates every 24 hours, the orientation of the ions in the quantum computer/detector changes with respect to the Sun’s rest frame. If space were squeezed in one direction and not another, the energies of the electrons in the ions would have shifted with a 12-hour period. (Hartmut Haeffner image)

If space were squeezed in one or more directions, the energy of the electrons would change with a 12-hour period. It didn’t, showing that space is in fact isotropic to one part in a billion billion (1018), 100 times better than previous experiments involving electrons, and five times better than experiments like Michelson and Morley’s that used light.

The results disprove at least one theory that extends the Standard Model by assuming some anisotropy of space, he said.

Häffner and his colleagues, including former graduate student Thaned Pruttivarasin, now at the Quantum Metrology Laboratory in Saitama, Japan, will report their findings in the Jan. 29 issue of the journal Nature.

Entangled qubits

Häffner came up with the idea of using entangled ions to test the isotropy of space while building quantum computers, which involve using ionized atoms as quantum bits, or qubits, entangling their electron wave functions, and forcing them to evolve to do calculations not possible with today’s digital computers. It occurred to him that two entangled qubits could serve as sensitive detectors of slight disturbances in space.

“I wanted to do the experiment because I thought it was elegant and that it would be a cool thing to apply our quantum computers to a completely different field of physics,” he said. “But I didn’t think we would be competitive with experiments being performed by people working in this field. That was completely out of the blue.”

He hopes to make more sensitive quantum computer detectors using other ions, such as ytterbium, to gain another 10,000-fold increase in the precision measurement of Lorentz symmetry. He is also exploring with colleagues future experiments to detect the spatial distortions caused by the effects of dark matter particles, which are a complete mystery despite comprising 27 percent of the mass of the universe.

“For the first time we have used tools from quantum information to perform a test of fundamental symmetries, that is, we engineered a quantum state which is immune to the prevalent noise but sensitive to the Lorentz-violating effects,” Häffner said. “We were surprised the experiment just worked, and now we have a fantastic new method at hand which can be used to make very precise measurements of perturbations of space.”

Other co-authors are UC Berkeley graduate student Michael Ramm, former UC Berkeley postdoc Michael Hohensee of Lawrence Livermore National Laboratory, and colleagues from the University of Delaware and Maryland and institutions in Russia. The work was supported by the National Science Foundation.

Source: UC Berkeley

Join the hunt to break the Higgs boson ‘barrier’

Online volunteers are being asked to spot tiny explosions that could be evidence for new particles that will require new models of physics.

Higgs Hunters [www.higgshunters.org], a project launched today by UK and US scientists working on the ATLAS experiment, enables members of the public to view 25,000 images recorded at CERN’s Large Hadron Collider. By tagging the origins of tracks on these images volunteers could spot sub-atomic explosions caused when a Higgs boson ‘dies’, which some scientists think could generate a kind of particle new to physics.

‘If anything discovering what happens when a Higgs boson ‘dies’ could be even more exciting that the original discovery that the Higgs boson exists made at CERN back in 2012,’ said Professor Alan Barr of Oxford University’s Department of Physics, lead scientist of the Higgs Hunters project. ‘We want volunteers to help us go beyond the Higgs boson ‘barrier’ by examining pictures of these collisions and telling us what they see.’

In the ATLAS experiment at CERN’s Large Hadron Collider protons are smashed together at up to one billion kilometres per hour. Such collisions can generate Higgs bosons: these are known to rapidly decay into other particles and some scientists believe these could include a new type of previously unobserved particle. Simulations predict that these new particles should leave tell-tale tracks inside the ATLAS experiment, which computer programs find difficult to identify, but which human eyes can often pick out.

Professor Andy Haas of New York University said: ‘Writing computer algorithms to identify these particles is tough, so we’re excited to see how much better we can do when people help us with the hunt.’

Professor Chris Lintott of Oxford University’s Department of Physics, Zooniverse Principal Investigator, said: ‘The most exciting citizen science comes when you find the unexpected lurking amongst the data, and who knows what could be out there in the data from the ATLAS experiment?’

Professor Dave Charlton, spokesperson of the ATLAS Collaboration, said: ‘With the Higgs Hunters project, people can look directly at ATLAS data to help us find unexpected phenomena – perhaps volunteers will be able to spot new physics with their own eyes!’

A successful detection of new particles would be a huge leap forward for particle physics, as they would lie beyond the Standard Model – the current best theory of the fundamental constituents of the Universe.

Source: Oxford University

The mass difference spectrum: the LHCb result shows strong evidence of the existence of two new particles the Xi_b'- (first peak) and Xi_b*- (second peak), with the very high-level confidence of 10 sigma. The black points are the signal sample and the hatched red histogram is a control sample. The blue curve represents a model including the two new particles, fitted to the data. Delta_m is the difference between the mass of the Xi_b0 pi- pair and the sum of the individual masses of the Xi_b0 and pi-.. INSET: Detail of the Xi_b'- region plotted with a finer binning.
Credit: CERN

LHCb experiment observes two new baryon particles never seen before

Geneva 19 November 2014. Today the collaboration for the LHCb experiment at CERN1’s Large Hadron Collider announced the discovery of two new particles in the baryon family. The particles, known as the Xi_b’- and Xi_b*-, were predicted to exist by the quark model but had never been seen before. A related particle, the Xi_b*0, was found by the CMS experiment at CERN in 2012. The LHCb collaboration submitted a paper reporting the finding to Physical Review Letters.

Like the well-known protons that the LHC accelerates, the new particles are baryons made from three quarks bound together by the strong force. The types of quarks are different, though: the new X_ib particles both contain one beauty (b), one strange (s), and one down (d) quark. Thanks to the heavyweight b quarks, they are more than six times as massive as the proton. But the particles are more than just the sum of their parts: their mass also depends on how they are configured. Each of the quarks has an attribute called “spin”. In the Xi_b’- state, the spins of the two lighter quarks point in the opposite direction to the b quark, whereas in the Xi_b*- state they are aligned. This difference makes the Xi_b*a little heavier.

“Nature was kind and gave us two particles for the price of one,” said Matthew Charles of the CNRS’s LPNHE laboratory at Paris VI University. “The Xi_b’is very close in mass to the sum of its decay products: if it had been just a little lighter, we wouldn’t have seen it at all using the decay signature that we were looking for.”

 The mass difference spectrum: the LHCb result shows strong evidence of the existence of two new particles the Xi_b'- (first peak) and Xi_b*- (second peak), with the very high-level confidence of 10 sigma. The black points are the signal sample and the hatched red histogram is a control sample. The blue curve represents a model including the two new particles, fitted to the data. Delta_m is the difference between the mass of the Xi_b0 pi- pair and the sum of the individual masses of the Xi_b0 and pi-.. INSET: Detail of the Xi_b'- region plotted with a finer binning. Credit: CERN
The mass difference spectrum: the LHCb result shows strong evidence of the existence of two new particles the Xi_b’- (first peak) and Xi_b*- (second peak), with the very high-level confidence of 10 sigma. The black points are the signal sample and the hatched red histogram is a control sample. The blue curve represents a model including the two new particles, fitted to the data. Delta_m is the difference between the mass of the Xi_b0 pi- pair and the sum of the individual masses of the Xi_b0 and pi-.. INSET: Detail of the Xi_b’- region plotted with a finer binning.
Credit: CERN

“This is a very exciting result. Thanks to LHCb’s excellent hadron identification, which is unique among the LHC experiments, we were able to separate a very clean and strong signal from the background,”said Steven Blusk from Syracuse University in New York. “It demonstrates once again the sensitivity and how precise the LHCb detector is.”

As well as the masses of these particles, the research team studied their relative production rates, their widths – a measure of how unstable they are – and other details of their decays. The results match up with predictions based on the theory of Quantum Chromodynamics (QCD).

QCD is part of the Standard Model of particle physics, the theory that describes the fundamental particles of matter, how they interact and the forces between them. Testing QCD at high precision is a key to refine our understanding of quark dynamics, models of which are tremendously difficult to calculate.

“If we want to find new physics beyond the Standard Model, we need first to have a sharp picture,” said LHCb’s physics coordinator Patrick Koppenburg from Nikhef Institute in Amsterdam. “Such high precision studies will help us to differentiate between Standard Model effects and anything new or unexpected in the future.”

The measurements were made with the data taken at the LHC during 2011-2012. The LHC is currently being prepared – after its first long shutdown – to operate at higher energies and with more intense beams. It is scheduled to restart by spring 2015.

Further information

Link to the paper on Arxiv: http://arxiv.org/abs/1411.4849(link is external)
More about the result on LHCb’s collaboration website: http://lhcb-public.web.cern.ch/lhcb-public/Welcome.html#StrBeaBa
Observation of a new Xi_b*0 beauty particle, on CMS’ collaboration website:http://cms.web.cern.ch/news/observation-new-xib0-beauty-particle

Footnote(s)

1. CERN, the European Organization for Nuclear Research, is the world’s leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a Candidate for Accession. Serbia is an Associate Member in the pre-stage to Membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer Status.

Source: CERN