Tag Archives: nasa

NASA Telescope Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around Single Star

NASA’s Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. Three of these planets are firmly located in the habitable zone, the area around the parent star where a rocky planet is most likely to have liquid water.

The discovery sets a new record for greatest number of habitable-zone planets found around a single star outside our solar system. All of these seven planets could have liquid water – key to life as we know it – under the right atmospheric conditions, but the chances are highest with the three in the habitable zone.

“This discovery could be a significant piece in the puzzle of finding habitable environments, places that are conducive to life,” said Thomas Zurbuchen, associate administrator of the agency’s Science Mission Directorate in Washington. “Answering the question ‘are we alone’ is a top science priority and finding so many planets like these for the first time in the habitable zone is a remarkable step forward toward that goal.”

At about 40 light-years (235 trillion miles) from Earth, the system of planets is relatively close to us, in the constellation Aquarius. Because they are located outside of our solar system, these planets are scientifically known as exoplanets.

This exoplanet system is called TRAPPIST-1, named for The Transiting Planets and Planetesimals Small Telescope (TRAPPIST) in Chile. In May 2016, researchers using TRAPPIST announced they had discovered three planets in the system. Assisted by several ground-based telescopes, including the European Southern Observatory’s Very Large Telescope, Spitzer confirmed the existence of two of these planets and discovered five additional ones, increasing the number of known planets in the system to seven.

The new results were published Wednesday in the journal Nature, and announced at a news briefing at NASA Headquarters in Washington.

Using Spitzer data, the team precisely measured the sizes of the seven planets and developed first estimates of the masses of six of them, allowing their density to be estimated.

Based on their densities, all of the TRAPPIST-1 planets are likely to be rocky. Further observations will not only help determine whether they are rich in water, but also possibly reveal whether any could have liquid water on their surfaces. The mass of the seventh and farthest exoplanet has not yet been estimated – scientists believe it could be an icy, “snowball-like” world, but further observations are needed.

“The seven wonders of TRAPPIST-1 are the first Earth-size planets that have been found orbiting this kind of star,” said Michael Gillon, lead author of the paper and the principal investigator of the TRAPPIST exoplanet survey at the University of Liege, Belgium. “It is also the best target yet for studying the atmospheres of potentially habitable, Earth-size worlds.”

In contrast to our sun, the TRAPPIST-1 star – classified as an ultra-cool dwarf – is so cool that liquid water could survive on planets orbiting very close to it, closer than is possible on planets in our solar system. All seven of the TRAPPIST-1 planetary orbits are closer to their host star than Mercury is to our sun. The planets also are very close to each other. If a person was standing on one of the planet’s surface, they could gaze up and potentially see geological features or clouds of neighboring worlds, which would sometimes appear larger than the moon in Earth’s sky.

The planets may also be tidally locked to their star, which means the same side of the planet is always facing the star, therefore each side is either perpetual day or night. This could mean they have weather patterns totally unlike those on Earth, such as strong winds blowing from the day side to the night side, and extreme temperature changes.

Spitzer, an infrared telescope that trails Earth as it orbits the sun, was well-suited for studying TRAPPIST-1 because the star glows brightest in infrared light, whose wavelengths are longer than the eye can see. In the fall of 2016, Spitzer observed TRAPPIST-1 nearly continuously for 500 hours. Spitzer is uniquely positioned in its orbit to observe enough crossing – transits – of the planets in front of the host star to reveal the complex architecture of the system. Engineers optimized Spitzer’s ability to observe transiting planets during Spitzer’s “warm mission,” which began after the spacecraft’s coolant ran out as planned after the first five years of operations.

“This is the most exciting result I have seen in the 14 years of Spitzer operations,” said Sean Carey, manager of NASA’s Spitzer Science Center at Caltech/IPAC in Pasadena, California. “Spitzer will follow up in the fall to further refine our understanding of these planets so that the James Webb Space Telescope can follow up. More observations of the system are sure to reveal more secrets.”

Following up on the Spitzer discovery, NASA’s Hubble Space Telescope has initiated the screening of four of the planets, including the three inside the habitable zone. These observations aim at assessing the presence of puffy, hydrogen-dominated atmospheres, typical for gaseous worlds like Neptune, around these planets.

In May 2016, the Hubble team observed the two innermost planets, and found no evidence for such puffy atmospheres. This strengthened the case that the planets closest to the star are rocky in nature.

“The TRAPPIST-1 system provides one of the best opportunities in the next decade to study the atmospheres around Earth-size planets,” said Nikole Lewis, co-leader of the Hubble study and astronomer at the Space Telescope Science Institute in Baltimore, Maryland. NASA’s planet-hunting Kepler space telescope also is studying the TRAPPIST-1 system, making measurements of the star’s minuscule changes in brightness due to transiting planets. Operating as the K2 mission, the spacecraft’s observations will allow astronomers to refine the properties of the known planets, as well as search for additional planets in the system. The K2 observations conclude in early March and will be made available on the public archive.

Spitzer, Hubble, and Kepler will help astronomers plan for follow-up studies using NASA’s upcoming James Webb Space Telescope, launching in 2018. With much greater sensitivity, Webb will be able to detect the chemical fingerprints of water, methane, oxygen, ozone, and other components of a planet’s atmosphere. Webb also will analyze planets’ temperatures and surface pressures – key factors in assessing their habitability.

NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate. Science operations are conducted at the Spitzer Science Center, at Caltech, in Pasadena, California. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at Caltech/IPAC. Caltech manages JPL for NASA.

For more information about Spitzer, visit:

https://www.nasa.gov/spitzer

For more information on the TRAPPIST-1 system, visit:

https://exoplanets.nasa.gov/trappist1

For more information on exoplanets, visit:

https://www.nasa.gov/exoplanets

Credits
Source: NASA Solar SystemFelicia Chou / Sean Potter
Headquarters, Washington
202-358-1726 / 202-358-1536
felicia.chou@nasa.gov / sean.potter@nasa.gov

Elizabeth Landau
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-6425
elizabeth.landau@jpl.nasa.gov

NASA Satellite Finds Unreported Sources of Toxic Air Pollution

Using a new satellite-based method, scientists at NASA, Environment and Climate Change Canada, and two universities have located 39 unreported and major human-made sources of toxic sulfur dioxide emissions.

A known health hazard and contributor to acid rain, sulfur dioxide (SO2) is one of six air pollutants regulated by the U.S. Environmental Protection Agency. Current, sulfur dioxide monitoring activities include the use of emission inventories that are derived from ground-based measurements and factors, such as fuel usage. The inventories are used to evaluate regulatory policies for air quality improvements and to anticipate future emission scenarios that may occur with economic and population growth.

 Source: NASA

But, to develop comprehensive and accurate inventories, industries, government agencies and scientists first must know the location of pollution sources.

“We now have an independent measurement of these emission sources that does not rely on what was known or thought known,” said Chris McLinden, an atmospheric scientist with Environment and Climate Change Canada in Toronto and lead author of the study published this week in Nature Geosciences. “When you look at a satellite picture of sulfur dioxide, you end up with it appearing as hotspots – bull’s-eyes, in effect — which makes the estimates of emissions easier.”

The 39 unreported emission sources, found in the analysis of satellite data from 2005 to 2014, are clusters of coal-burning power plants, smelters, oil and gas operations found notably in the Middle East, but also in Mexico and parts of Russia. In addition, reported emissions from known sources in these regions were — in some cases — two to three times lower than satellite-based estimates.

Altogether, the unreported and underreported sources account for about 12 percent of all human-made emissions of sulfur dioxide – a discrepancy that can have a large impact on regional air quality, said McLinden.

The research team also located 75 natural sources of sulfur dioxide — non-erupting volcanoes slowly leaking the toxic gas throughout the year. While not necessarily unknown, many volcanoes are in remote locations and not monitored, so this satellite-based data set is the first to provide regular annual information on these passive volcanic emissions.

“Quantifying the sulfur dioxide bull’s-eyes is a two-step process that would not have been possible without two innovations in working with the satellite data,” said co-author Nickolay Krotkov, an atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

First was an improvement in the computer processing that transforms raw satellite observations from the Dutch-Finnish Ozone Monitoring Instrument aboard NASA’s Aura spacecraft into precise estimates of sulfur dioxide concentrations. Krotkov and his team now are able to more accurately detect smaller sulfur dioxide concentrations, including those emitted by human-made sources such as oil-related activities and medium-size power plants.

Being able to detect smaller concentrations led to the second innovation. McLinden and his colleagues used a new computer program to more precisely detect sulfur dioxide that had been dispersed and diluted by winds. They then used accurate estimates of wind strength and direction derived from a satellite data-driven model to trace the pollutant back to the location of the source, and also to estimate how much sulfur dioxide was emitted from the smoke stack.

“The unique advantage of satellite data is spatial coverage,” said Bryan Duncan, an atmospheric scientist at Goddard. “This paper is the perfect demonstration of how new and improved satellite datasets, coupled with new and improved data analysis techniques, allow us to identify even smaller pollutant sources and to quantify these emissions over the globe.”

The University of Maryland, College Park, and Dalhousie University in Halifax, Nova Scotia, contributed to this study.

For more information about, and access to, NASA’s air quality data, visit:

http://so2.gsfc.nasa.gov/

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives, and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

For more information about NASA Earth science research, visit:

http://www.nasa.gov/earth

Using images from ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope, astronomers have discovered fast-moving wave-like features in the dusty disc around the nearby star AU Microscopii. These odd structures are unlike anything ever observed, or even predicted, before now.

The top row shows a Hubble image of the AU Mic disc from 2010, the middle row Hubble from 2011 and the bottom row VLT/SPHERE data from 2014. The black central circles show where the brilliant light of the central star has been blocked off to reveal the much fainter disc, and the position of the star is indicated schematically.

The scale bar at the top of the picture indicates the diameter of the orbit of the planet Neptune in the Solar System (60 AU).

Note that the brightness of the outer parts of the disc has been artificially brightened to reveal the faint structure.

Credit:
ESO, NASA & ESA

Mysterious Ripples Found Racing Through Planet-forming Disc: ESO

Unique structures spotted around nearby star


 

Using images from ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope, astronomers have discovered fast-moving wave-like features in the dusty disc around the nearby star AU Microscopii. These odd structures are unlike anything ever observed, or even predicted, before now. The top row shows a Hubble image of the AU Mic disc from 2010, the middle row Hubble from 2011 and the bottom row VLT/SPHERE data from 2014. The black central circles show where the brilliant light of the central star has been blocked off to reveal the much fainter disc, and the position of the star is indicated schematically. The scale bar at the top of the picture indicates the diameter of the orbit of the planet Neptune in the Solar System (60 AU). Note that the brightness of the outer parts of the disc has been artificially brightened to reveal the faint structure. Credit: ESO, NASA & ESA
Using images from ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope, astronomers have discovered fast-moving wave-like features in the dusty disc around the nearby star AU Microscopii. These odd structures are unlike anything ever observed, or even predicted, before now.
The top row shows a Hubble image of the AU Mic disc from 2010, the middle row Hubble from 2011 and the bottom row VLT/SPHERE data from 2014. The black central circles show where the brilliant light of the central star has been blocked off to reveal the much fainter disc, and the position of the star is indicated schematically.
The scale bar at the top of the picture indicates the diameter of the orbit of the planet Neptune in the Solar System (60 AU).
Note that the brightness of the outer parts of the disc has been artificially brightened to reveal the faint structure.
Credit:
ESO, NASA & ESA

Using images from ESO’s Very Large Telescope and the NASA/ESA Hubble Space Telescope, astronomers have discovered never-before-seen structures within a dusty disc surrounding a nearby star. The fast-moving wave-like features in the disc of the star AU Microscopii are unlike anything ever observed, or even predicted, before now. The origin and nature of these features present a new mystery for astronomers to explore. The results are published in the journal Nature on 8 October 2015.

AU Microscopii, or AU Mic for short, is a young, nearby star surrounded by a large disc of dust [1]. Studies of such debris discs can provide valuable clues about how planets, which form from these discs, are created.

Astronomers have been searching AU Mic’s disc for any signs of clumpy or warped features, as such signs might give away the location of possible planets. And in 2014 they used the more powerful high-contrast imaging capabilities of ESO’s newly installed SPHERE instrument, mounted on the Very Large Telescope for their search — and discovered something very unusual.

Our observations have shown something unexpected,” explains Anthony Boccaletti, LESIA (Observatoire de Paris/CNRS/UPMC/Paris-Diderot), France, and lead author on the paper. “The images from SPHERE show a set of unexplained features in the disc which have an arch-like, or wave-like, structure, unlike anything that has ever been observed before.

Five wave-like arches at different distances from the star show up in the new images, reminiscent of ripples in water. After spotting the features in the SPHERE data the team turned to earlier images of the disc taken by the NASA/ESA Hubble Space Telescope in 2010 and 2011 to see whether the features were also visible in these [2]. They were not only able to identify the features on the earlier Hubble images — but they also discovered that they had changed over time. It turns out that these ripples are moving — and very fast!

We reprocessed images from the Hubble data and ended up with enough information to track the movement of these strange features over a four-year period,” explains team member Christian Thalmann (ETH Zürich, Switzerland). “By doing this, we found that the arches are racing away from the star at speeds of up to about 40 000 kilometres/hour!

The features further away from the star seem to be moving faster than those closer to it. At least three of the features are moving so fast that they could well be escaping from the gravitational attraction of the star. Such high speeds rule out the possibility that these are conventional disc features caused by objects — like planets — disturbing material in the disc while orbiting the star. There must have been something else involved to speed up the ripples and make them move so quickly, meaning that they are a sign of something truly unusual [3].

Everything about this find was pretty surprising!” comments co-author Carol Grady of Eureka Scientific, USA. “And because nothing like this has been observed or predicted in theory we can only hypothesise when it comes to what we are seeing and how it came about.

The team cannot say for sure what caused these mysterious ripples around the star. But they have considered and ruled out a series of phenomena as explanations, including the collision of two massive and rare asteroid-like objects releasing large quantities of dust, and spiral waves triggered by instabilities in the system’s gravity.

But other ideas that they have considered look more promising.

One explanation for the strange structure links them to the star’s flares. AU Mic is a star with high flaring activity — it often lets off huge and sudden bursts of energy from on or near its surface,” explains co-author Glenn Schneider of Steward Observatory, USA. “One of these flares could perhaps have triggered something on one of the planets — if there are planets — like a violent stripping of material which could now be propagating through the disc, propelled by the flare’s force.

It is very satisfying that SPHERE has proved to be very capable at studying discs like this in its first year of operation,” adds Jean-Luc Beuzit, who is both a co-author of the new study and also led the development of SPHERE itself.

The team plans to continue to observe the AU Mic system with SPHERE and other facilities, including ALMA, to try to understand what is happening. But, for now, these curious features remain an unsolved mystery.

Notes

[1] AU Microscopii lies just 32 light-years away from Earth. The disc essentially comprises asteroids that have collided with such vigour that they have been ground to dust.

[2] The data were gathered by Hubble’s Space Telescope Imaging Spectrograph (STIS).

[3] The edge-on view of the disc complicates the interpretation of its three-dimensional structure.

More information

This research was presented in a paper entitled “Fast-Moving Structures in the Debris Disk Around AU Microscopii”, to appear in the journal Nature on 8 October 2015.

Source: ESO

NASA-NOAA's Suomi NPP satellite passed over Joaquin at 06:10 UTC (2:10 a.m. EDT) on Oct. 1 as it was strengthening from a Category 2 to a Category 3 hurricane. Imagery showed cloud top temperatures colder than -63F/-53C (yellow).
Credits: NRL/NASA/NOAA

Satellites show Joaquin becoming a Category 4 hurricane:NASA

For details and related images CLICK HERE!

Hurricane Joaquin had become a Category 4 hurricane on the Saffir-Simpson Wind Scale by 2 p.m. EDT on October 1. At NASA, satellite imagery from NOAA’s GOES-East satellite was compiled into an animation that showed the hurricane strengthening. Earlier in the day, NASA-NOAA’s Suomi NPP satellite saw powerful thunderstorms within, indicating further strengthening.

The GOES-East satellite is managed by NOAA, and at NASA’s GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Maryland, imagery from GOES-East we compiled into an animation. The infrared and visible imagery from September 29 to October 1 from showed Hurricane Joaquin become a major hurricane in the Bahamas.

NASA-NOAA's Suomi NPP satellite passed over Joaquin at 06:10 UTC (2:10 a.m. EDT) on Oct. 1 as it was strengthening from a Category 2 to a Category 3 hurricane. Imagery showed cloud top temperatures colder than -63F/-53C (yellow). Credits: NRL/NASA/NOAA
NASA-NOAA’s Suomi NPP satellite passed over Joaquin at 06:10 UTC (2:10 a.m. EDT) on Oct. 1 as it was strengthening from a Category 2 to a Category 3 hurricane. Imagery showed cloud top temperatures colder than -63F/-53C (yellow).
Credits: NRL/NASA/NOAA

Earlier in the morning, NASA-NOAA’s Suomi NPP satellite passed over Joaquin at 06:10 UTC (2:10 a.m. EDT) as it was strengthening from a Category 2 to a Category 3 hurricane. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard captured an infrared image that showed cloud top temperatures colder than -63F/-53C, indicative of powerful storms within the hurricane. NASA research has shown that storms with cloud tops that high (and that stretch that high into the troposphere) have the capability to generate heavy rain.

On October 1, a Hurricane Warning was in effect for the Central Bahamas, Northwestern Bahamas including the Abacos, Berry Islands, Eleuthera, Grand Bahama Island, and New Providence, The Acklins, Crooked Island, and Mayaguana in the southeastern Bahamas. A Hurricane Watch was in effect for Bimini and Andros Island, and a Tropical Storm Warning was in effect for the remainder of the southeastern Bahamas excluding the Turks and Caicos Islands and Andros Island.

At 2 p.m. EDT (1800 UTC), the center of Hurricane Joaquin was located near latitude 23.0 North, longitude 74.2 West. Joaquin was moving generally southwestward at about 6 mph (9 kph), and the National Hurricane Center forecast a turn toward the northwest and north on Friday, October 2. On the forecast track, the center of Joaquin will move near or over portions of the central Bahamas today and tonight and pass near or over portions of the northwestern Bahamas on Friday, October 2.

Reports from an Air Force Reserve Hurricane Hunter aircraft indicated that maximum sustained winds have increased to near 130 mph (210 kph) with higher gusts. Joaquin is now a category 4 hurricane on the Saffir-Simpson Hurricane Wind Scale. Some additional strengthening is possible during the next 24 hours, with some fluctuations in intensity possible Friday night and Saturday.

Hurricane force winds extend outward up to 45 miles (75 km) from the center and tropical storm force winds extend outward up to 140 miles (220 km).

The latest minimum central pressure extrapolated from Hurricane Hunter aircraft data is 936 millibars. For effects on the Bahamas, updates to forecasts, watches and warnings, visit the National Hurricane Center website: http://www.nhc.noaa.gov.

The NHC updated forecast takes Joaquin on a more northerly track from Saturday, October 3 through Tuesday, October 6 toward Long Island, New York. Tracks and forecasts are subject to change.

Source : NASA

 

The system Kepler-444 formed when the Milky Way galaxy was a youthful two billion years old. The planets were detected from the dimming that occurs when they transit the disc of their parent star, as shown in this artist's conception.

Image courtesy of NASA

Circular orbits identified for 74 small exoplanets

Observations of 74 Earth-sized planets around distant stars may narrow field of habitable candidates.

By Jennifer Chu


CAMBRIDGE, Mass. – Viewed from above, our solar system’s planetary orbits around the sun resemble rings around a bulls-eye. Each planet, including Earth, keeps to a roughly circular path, always maintaining the same distance from the sun.

The system Kepler-444 formed when the Milky Way galaxy was a youthful two billion years old. The planets were detected from the dimming that occurs when they transit the disc of their parent star, as shown in this artist's conception. Image courtesy of NASA
The system Kepler-444 formed when the Milky Way galaxy was a youthful two billion years old. The planets were detected from the dimming that occurs when they transit the disc of their parent star, as shown in this artist’s conception.
Image courtesy of NASA

For decades, astronomers have wondered whether the solar system’s circular orbits might be a rarity in our universe. Now a new analysis suggests that such orbital regularity is instead the norm, at least for systems with planets as small as Earth.

In a paper published in the Astrophysical Journal, researchers from MIT and Aarhus University in Denmark report that 74 exoplanets, located hundreds of light-years away, orbit their respective stars in circular patterns, much like the planets of our solar system.

These 74 exoplanets, which orbit 28 stars, are about the size of Earth, and their circular trajectories stand in stark contrast to those of more massive exoplanets, some of which come extremely close to their stars before hurtling far out in highly eccentric, elongated orbits.

“Twenty years ago, we only knew about our solar system, and everything was circular and so everyone expected circular orbits everywhere,” says Vincent Van Eylen, a visiting graduate student in MIT’s Department of Physics. “Then we started finding giant exoplanets, and we found suddenly a whole range of eccentricities, so there was an open question about whether this would also hold for smaller planets. We find that for small planets, circular is probably the norm.”

Ultimately, Van Eylen says that’s good news in the search for life elsewhere. Among other requirements, for a planet to be habitable, it would have to be about the size of Earth — small and compact enough to be made of rock, not gas. If a small planet also maintained a circular orbit, it would be even more hospitable to life, as it would support a stable climate year-round. (In contrast, a planet with a more eccentric orbit might experience dramatic swings in climate as it orbited close in, then far out from its star.)

“If eccentric orbits are common for habitable planets, that would be quite a worry for life, because they would have such a large range of climate properties,” Van Eylen says. “But what we find is, probably we don’t have to worry too much because circular cases are fairly common.”

Star-crossed numbers

In the past, researchers have calculated the orbital eccentricities of large, “gas giant” exoplanets using radial velocity — a technique that measures a star’s movement. As a planet orbits a star, its gravitational force will tug on the star, causing it to move in a pattern that reflects the planet’s orbit. However, the technique is most successful for larger planets, as they exert enough gravitational pull to influence their stars.

Researchers commonly find smaller planets by using a transit-detecting method, in which they study the light given off by a star, in search of dips in starlight that signify when a planet crosses, or “transits,” in front of that star, momentarily diminishing its light. Ordinarily, this method only illuminates a planet’s existence, not its orbit. But Van Eylen and his colleague Simon Albrecht, of Aarhus University, devised a way to glean orbital information from stellar transit data.

They first reasoned that if they knew the mass and radius of a planet’s star, they could calculate how long a planet would take to orbit that star, if its orbit were circular. The mass and radius of a star determines its gravitational pull, which in turn influences how fast a planet travels around the star.

By calculating a planet’s orbital velocity in a circular orbit, they could then estimate a transit’s duration — how long a planet would take to cross in front of a star. If the calculated transit matched an actual transit, the researchers reasoned that the planet’s orbit must be circular. If the transit were longer or shorter, the orbit must be more elongated, or eccentric.

Not so eccentric

To obtain actual transit data, the team looked through data collected over the past four years by NASA’s Kepler telescope — a space observatory that surveys a slice of the sky in search of habitable planets. The telescope has monitored the brightness of over 145,000 stars, only a fraction of which have been characterized in any detail.

The team chose to concentrate on 28 stars for which mass and radius have previously been measured, using asteroseismology — a technique that measures stellar pulsations, which reflect a star’s mass and radius.

These 28 stars host multiplanet systems — 74 exoplanets in all. The researchers obtained Kepler data for each exoplanet, looking not only for the occurrence of transits, but also their duration. Given the mass and radius of the host stars, the team calculated each planet’s transit duration if its orbit were circular, then compared the estimated transit durations with actual transit durations from Kepler data.

Across the board, Van Eylen and Albrecht found the calculated and actual transit durations matched, suggesting that all 74 exoplanets maintain circular, not eccentric, orbits.

“We found that most of them matched pretty closely, which means they’re pretty close to being circular,” Van Eylen says. “We are very certain that if very high eccentricities were common, we would’ve seen that, which we don’t.”

Van Eylen says the orbital results for these smaller planets may eventually help to explain why larger planets have more extreme orbits.

“We want to understand why some exoplanets have extremely eccentric orbits, while in other cases, such as the solar system, planets orbit mostly circularly,” Van Eylen says. “This is one of the first times we’ve reliably measured the eccentricities of small planets, and it’s exciting to see they are different from the giant planets, but similar to the solar system.”

This research was funded in part by the European Research Council.

 

Related links

ARCHIVE: New technique allows analysis of clouds around exoplanets
http://newsoffice.mit.edu/2015/clouds-around-exoplanets-0303

ARCHIVE: New technique measures mass of exoplanets
http://newsoffice.mit.edu/2013/new-technique-measures-mass-of-exoplanets-1219

ARCHIVE: Researchers discover that an exoplanet is Earth-like in mass and size
http://newsoffice.mit.edu/2013/kepler-78b-earth-like-in-mass-and-size-1030

 

Source: MIT News Office

A second minor planet may possess Saturn-like rings

Researchers detect features around Chiron that may signal rings, jets, or a shell of dust.

By Jennifer Chu


CAMBRIDGE, Mass. – There are only five bodies in our solar system that are known to bear rings. The most obvious is the planet Saturn; to a lesser extent, rings of gas and dust also encircle Jupiter, Uranus, and Neptune. The fifth member of this haloed group is Chariklo, one of a class of minor planets called centaurs: small, rocky bodies that possess qualities of both asteroids and comets.

Scientists only recently detected Chariklo’s ring system — a surprising finding, as it had been thought that centaurs are relatively dormant. Now scientists at MIT and elsewhere have detected a possible ring system around a second centaur, Chiron.

In November 2011, the group observed a stellar occultation in which Chiron passed in front of a bright star, briefly blocking its light. The researchers analyzed the star’s light emissions, and the momentary shadow created by Chiron, and identified optical features that suggest the centaur may possess a circulating disk of debris. The team believes the features may signify a ring system, a circular shell of gas and dust, or symmetric jets of material shooting out from the centaur’s surface.

“It’s interesting, because Chiron is a centaur — part of that middle section of the solar system, between Jupiter and Pluto, where we originally weren’t thinking things would be active, but it’s turning out things are quite active,” says Amanda Bosh, a lecturer in MIT’s Department of Earth, Atmospheric and Planetary Sciences.

Bosh and her colleagues at MIT — Jessica Ruprecht, Michael Person, and Amanda Gulbis — have published their results in the journal Icarus.

Catching a shadow

Chiron, discovered in 1977, was the first planetary body categorized as a centaur, after the mythological Greek creature — a hybrid of man and beast. Like their mythological counterparts, centaurs are hybrids, embodying traits of both asteroids and comets. Today, scientists estimate there are more than 44,000 centaurs in the solar system, concentrated mainly in a band between the orbits of Jupiter and Pluto.

While most centaurs are thought to be dormant, scientists have seen glimmers of activity from Chiron. Starting in the late 1980s, astronomers observed patterns of brightening from the centaur, as well as activity similar to that of a streaking comet.

In 1993 and 1994, James Elliot, then a professor of planetary astronomy and physics at MIT, observed a stellar occultation of Chiron and made the first estimates of its size. Elliot also observed features in the optical data that looked like jets of water and dust spewing from the centaur’s surface.

Now MIT researchers — some of them former members of Elliot’s group — have obtained more precise observations of Chiron, using two large telescopes in Hawaii: NASA’s Infrared Telescope Facility, on Mauna Kea, and the Las Cumbres Observatory Global Telescope Network, at Haleakala.

In 2010, the team started to chart the orbits of Chiron and nearby stars in order to pinpoint exactly when the centaur might pass across a star bright enough to detect. The researchers determined that such a stellar occultation would occur on Nov. 29, 2011, and reserved time on the two large telescopes in hopes of catching Chiron’s shadow.

“There’s an aspect of serendipity to these observations,” Bosh says. “We need a certain amount of luck, waiting for Chiron to pass in front of a star that is bright enough. Chiron itself is small enough that the event is very short; if you blink, you might miss it.”

The team observed the stellar occultation remotely, from MIT’s Building 54. The entire event lasted just a few minutes, and the telescopes recorded the fading light as Chiron cast its shadow over the telescopes.

Rings around a theory

The group analyzed the resulting light, and detected something unexpected. A simple body, with no surrounding material, would create a straightforward pattern, blocking the star’s light entirely. But the researchers observed symmetrical, sharp features near the start and end of the stellar occultation — a sign that material such as dust might be blocking a fraction of the starlight.

The researchers observed two such features, each about 300 kilometers from the center of the centaur. Judging from the optical data, the features are 3 and 7 kilometers wide, respectively.  The features are similar to what Elliot observed in the 1990s.

In light of these new observations, the researchers say that Chiron may still possess symmetrical jets of gas and dust, as Elliot first proposed. However, other interpretations may be equally valid, including the “intriguing possibility,” Bosh says, of a shell or ring of gas and dust.

Ruprecht, who is a researcher at MIT’s Lincoln Laboratory, says it is possible to imagine a scenario in which centaurs may form rings: For example, when a body breaks up, the resulting debris can be captured gravitationally around another body, such as Chiron. Rings can also be leftover material from the formation of Chiron itself.

“Another possibility involves the history of Chiron’s distance from the sun,” Ruprecht says. “Centaurs may have started further out in the solar system and, through gravitational interactions with giant planets, have had their orbits perturbed closer in to the sun. The frozen material that would have been stable out past Pluto is becoming less stable closer in, and can turn into gases that spray dust and material off the surface of a body. ”

An independent group has since combined the MIT group’s occultation data with other light data, and has concluded that the features around Chiron most likely represent a ring system. However, Ruprecht says that researchers will have to observe more stellar occultations of Chiron to truly determine which interpretation — rings, shell, or jets — is the correct one.

“If we want to make a strong case for rings around Chiron, we’ll need observations by multiple observers, distributed over a few hundred kilometers, so that we can map the ring geometry,” Ruprecht says. “But that alone doesn’t tell us if the rings are a temporary feature of Chiron, or a more permanent one. There’s a lot of work that needs to be done.”

Nevertheless, Bosh says the possibility of a second ringed centaur in the solar system is an enticing one.

“Until Chariklo’s rings were found, it was commonly believed that these smaller bodies don’t have ring systems,” Bosh says. “If Chiron has a ring system, it will show it’s more common than previously thought.”

This research was funded in part by NASA and the National Research Foundation of South Africa.

Source: MIT News Office

This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.

Credit:
ESO/M. Kornmesser

Mars, the Red Planet once had more water than Earth’s Arctic Ocean

Researchers, from ESO, NASA and Keck, who are studying Mars’ atmosphere have provided some exciting results regarding the history of water on the red planet.


 

A primitive ocean on Mars held more water than Earth’s Arctic Ocean, and covered a greater portion of the planet’s surface than the Atlantic Ocean does on Earth, according to new results published today. An international team of scientists used ESO’s Very Large Telescope, along with instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility, to monitor the atmosphere of the planet and map out the properties of the water in different parts of Mars’s atmosphere over a six-year period. These new maps are the first of their kind. The results appear online in the journal Science today.

About four billion years ago, the young planet would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.

Our study provides a solid estimate of how much water Mars once had, by determining how much water was lost to space,” said Geronimo Villanueva, a scientist working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, USA, and lead author of the new paper. “With this work, we can better understand the history of water on Mars.

This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres. Credit: ESO/M. Kornmesser
This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.
Credit:
ESO/M. Kornmesser

The new estimate is based on detailed observations of two slightly different forms of water in Mars’s atmosphere. One is the familiar form of water, made with two hydrogen atoms and one oxygen, H2O. The other is HDO, or semi-heavy water, a naturally occurring variation in which one hydrogen atom is replaced by a heavier form, called deuterium.

As the deuterated form is heavier than normal water, it is less easily lost into space through evaporation. So, the greater the water loss from the planet, the greater the ratio of HDO to H2O in the water that remains [1].

The researchers distinguished the chemical signatures of the two types of water using ESO’s Very Large Telescope in Chile, along with instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility in Hawaii [2]. By comparing the ratio of HDO to H2O, scientists can measure by how much the fraction of HDO has increased and thus determine how much water has escaped into space. This in turn allows the amount of water on Mars at earlier times to be estimated.

In the study, the team mapped the distribution of H2O and HDO repeatedly over nearly six Earth years — equal to about three Mars years — producing global snapshots of each, as well as their ratio. The maps reveal seasonal changes and microclimates, even though modern Mars is essentially a desert.

Ulli Kaeufl of ESO, who was responsible for building one of the instruments used in this study and is a co-author of the new paper, adds: “I am again overwhelmed by how much power there is in remote sensing on other planets using astronomical telescopes: we found an ancient ocean more than 100 million kilometres away!” 

The team was especially interested in regions near the north and south poles, because the polar ice caps are the planet’s largest known reservoir of water. The water stored there is thought to document the evolution of Mars’s water from the wet Noachian period, which ended about 3.7 billion years ago, to the present.

The new results show that atmospheric water in the near-polar region was enriched in HDO by a factor of seven relative to Earth’s ocean water, implying that water in Mars’s permanent ice caps is enriched eight-fold. Mars must have lost a volume of water 6.5 times larger than the present polar caps to provide such a high level of enrichment. The volume of Mars’s early ocean must have been at least 20 million cubic kilometres.

Based on the surface of Mars today, a likely location for this water would be the Northern Plains, which have long been considered a good candidate because of their low-lying ground. An ancient ocean there would have covered 19% of the planet’s surface — by comparison, the Atlantic Ocean occupies 17% of the Earth’s surface.

With Mars losing that much water, the planet was very likely wet for a longer period of time than previously thought, suggesting the planet might have been habitable for longer,” said Michael Mumma, a senior scientist at Goddard and the second author on the paper.

It is possible that Mars once had even more water, some of which may have been deposited below the surface. Because the new maps reveal microclimates and changes in the atmospheric water content over time, they may also prove to be useful in the continuing search for underground water.

Notes

[1] In oceans on Earth there are about 3200 molecules of H2O for each HDO molecule.

[2] Although probes on the Martian surface and orbiting the planet can provide much more detailed in situmeasurements, they are not suitable for monitoring the properties of the whole Martian atmosphere. This is best done using infrared spectrographs on large telescopes back on Earth.

Source: ESO


 

Timeline of the approach and departure phases — surrounding close approach on July 14, 2015 — of the New Horizons Pluto encounter.
Image Credit: NASA/JHU APL/SwRI

NASA’s New Horizons Spacecraft Begins First Stages of Pluto Encounter

NASA’s New Horizons spacecraft recently began its long-awaited, historic encounter with Pluto. The spacecraft is entering the first of several approach phases that culminate July 14 with the first close-up flyby of the dwarf planet, 4.67 billion miles (7.5 billion kilometers) from Earth.

“NASA first mission to distant Pluto will also be humankind’s first close up view of this cold, unexplored world in our solar system,” said Jim Green, director of NASA’s Planetary Science Division at the agency’s Headquarters in Washington. “The New Horizons team worked very hard to prepare for this first phase, and they did it flawlessly.”

The fastest spacecraft when it was launched, New Horizons lifted off in January 2006. It awoke from its final hibernation period last month after a voyage of more than 3 billion miles, and will soon pass close to Pluto, inside the orbits of its five known moons. In preparation for the close encounter, the mission’s science, engineering and spacecraft operations teams configured the piano-sized probe for distant observations of the Pluto system that start Sunday, Jan. 25 with a long-range photo shoot.

 

 

Timeline of the approach and departure phases — surrounding close approach on July 14, 2015 — of the New Horizons Pluto encounter. Image Credit: NASA/JHU APL/SwRI
Timeline of the approach and departure phases — surrounding close approach on July 14, 2015 — of the New Horizons Pluto encounter.
Image Credit: NASA/JHU APL/SwRI

The images captured by New Horizons’ telescopic Long-Range Reconnaissance Imager (LORRI) will give mission scientists a continually improving look at the dynamics of Pluto’s moons. The images also will play a critical role in navigating the spacecraft as it covers the remaining 135 million miles (220 million kilometers) to Pluto.

“We’ve completed the longest journey any spacecraft has flown from Earth to reach its primary target, and we are ready to begin exploring,” said Alan Stern, New Horizons principal investigator from Southwest Research Institute in Boulder, Colorado.

LORRI will take hundreds of pictures of Pluto over the next few months to refine current estimates of the distance between the spacecraft and the dwarf planet. Though the Pluto system will resemble little more than bright dots in the camera’s view until May, mission navigators will use the data to design course-correction maneuvers to aim the spacecraft toward its target point this summer. The first such maneuver could occur as early as March.

“We need to refine our knowledge of where Pluto will be when New Horizons flies past it,” said Mark Holdridge, New Horizons encounter mission manager at Johns Hopkins University’s Applied Physics Laboratory (APL) in Laurel, Maryland. “The flyby timing also has to be exact, because the computer commands that will orient the spacecraft and point the science instruments are based on precisely knowing the time we pass Pluto – which these images will help us determine.”

The “optical navigation” campaign that begins this month marks the first time pictures from New Horizons will be used to help pinpoint Pluto’s location.

Throughout the first approach phase, which runs until spring, New Horizons will conduct a significant amount of additional science. Spacecraft instruments will gather continuous data on the interplanetary environment where the planetary system orbits, including measurements of the high-energy particles streaming from the sun and dust-particle concentrations in the inner reaches of the Kuiper Belt. In addition to Pluto, this area, the unexplored outer region of the solar system, potentially includes thousands of similar icy, rocky small planets.

More intensive studies of Pluto begin in the spring, when the cameras and spectrometers aboard New Horizons will be able to provide image resolutions higher than the most powerful telescopes on Earth. Eventually, the spacecraft will obtain images good enough to map Pluto and its moons more accurately than achieved by previous planetary reconnaissance missions.

APL manages the New Horizons mission for NASA’s Science Mission Directorate in Washington. Alan Stern, of the Southwest Research Institute (SwRI), headquartered in San Antonio, is the principal investigator and leads the mission. SwRI leads the science team, payload operations, and encounter science planning. New Horizons is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. APL designed, built and operates the spacecraft.

For more information about the New Horizons mission, visit:

www.nasa.gov/newhorizons

Although NASA's Hubble Space Telescope has taken many breathtaking images of the universe, one snapshot stands out from the rest: the iconic view of the so-called "Pillars of Creation." The jaw-dropping photo, taken in 1995, revealed never-before-seen details of three giant columns of cold gas bathed in the scorching ultraviolet light from a cluster of young, massive stars in a small region of the Eagle Nebula, or M16.

Credit: Hubble Site

Hubble Goes High Def to Revisit the Iconic ‘Pillars of Creation’

Although NASA’s Hubble Space Telescope has taken many breathtaking images of the universe, one snapshot stands out from the rest: the iconic view of the so-called “Pillars of Creation.” The jaw-dropping photo, taken in 1995, revealed never-before-seen details of three giant columns of cold gas bathed in the scorching ultraviolet light from a cluster of young, massive stars in a small region of the Eagle Nebula, or M16.

Though such butte-like features are common in star-forming regions, the M16 structures are by far the most photogenic and evocative. The Hubble image is so popular that it has appeared in movies and television shows, on tee-shirts and pillows, and even on a postage stamp.

And now, in celebration of its 25th anniversary, Hubble has revisited the famous pillars, providing astronomers with a sharper and wider view. As a bonus, the pillars have been photographed in near-infrared light, as well as visible light. The infrared view transforms the pillars into eerie, wispy silhouettes seen against a background of myriad stars. That’s because the infrared light penetrates much of the gas and dust, except for the densest regions of the pillars. Newborn stars can be seen hidden away inside the pillars. The new images are being unveiled at the American Astronomical Society meeting in Seattle, Washington.

Although the original image was dubbed the Pillars of Creation, the new image hints that they are also pillars of destruction. “I’m impressed by how transitory these structures are. They are actively being ablated away before our very eyes. The ghostly bluish haze around the dense edges of the pillars is material getting heated up and evaporating away into space. We have caught these pillars at a very unique and short-lived moment in their evolution,” explained Paul Scowen of Arizona State University in Tempe, who, with astronomer Jeff Hester, formerly of Arizona State University, led the original Hubble observations of the Eagle Nebula.

The infrared image shows that the reason the pillars exist is because the very ends of them are dense, and they shadow the gas below them, creating the long, pillar-like structures. The gas in between the pillars has long since been blown away by the ionizing winds from the central star cluster located above the pillars.

At the top edge of the left-hand pillar, a gaseous fragment has been heated up and is flying away from the structure, underscoring the violent nature of star-forming regions. “These pillars represent a very dynamic, active process,” Scowen said. “The gas is not being passively heated up and gently wafting away into space. The gaseous pillars are actually getting ionized (a process by which electrons are stripped off of atoms) and heated up by radiation from the massive stars. And then they are being eroded by the stars’ strong winds (barrage of charged particles), which are sandblasting away the tops of these pillars.”

When Scowen and Hester used Hubble to make the initial observations of the Eagle Nebula in 1995, astronomers had seen the pillar-like structures in ground-based images, but not in detail. They knew that the physical processes are not unique to the Eagle Nebula because star birth takes place across the universe. But at a distance of just 6,500 light-years, M16 is the most dramatic nearby example, as the team soon realized.

As Scowen was piecing together the Hubble exposures of the Eagle, he was amazed at what he saw. “I called Jeff Hester on his phone and said, ‘You need to get here now,’” Scowen recalled. “We laid the pictures out on the table, and we were just gushing because of all the incredible detail that we were seeing for the very first time.”

The first features that jumped out at the team in 1995 were the streamers of gas seemingly floating away from the columns. Astronomers had previously debated what effect nearby massive stars would have on the surrounding gas in stellar nurseries. “There is only one thing that can light up a neighborhood like this: massive stars kicking out enough horsepower in ultraviolet light to ionize the gas clouds and make them glow,” Scowen said. “Nebulous star-forming regions like M16 are the interstellar neon signs that say, ‘We just made a bunch of massive stars here.’ This was the first time we had directly seen observational evidence that the erosionary process, not only the radiation but the mechanical stripping away of the gas from the columns, was actually being seen.”

By comparing the 1995 and 2014 pictures, astronomers also noticed a lengthening of a narrow jet-like feature that may have been ejected from a newly forming star. The jet looks like a stream of water from a garden hose. Over the intervening 19 years, this jet has stretched farther into space, across an additional 60 billion miles, at an estimated speed of about 450,000 miles per hour.

Although NASA's Hubble Space Telescope has taken many breathtaking images of the universe, one snapshot stands out from the rest: the iconic view of the so-called "Pillars of Creation." The jaw-dropping photo, taken in 1995, revealed never-before-seen details of three giant columns of cold gas bathed in the scorching ultraviolet light from a cluster of young, massive stars in a small region of the Eagle Nebula, or M16. Credit: Hubble Site
Although NASA’s Hubble Space Telescope has taken many breathtaking images of the universe, one snapshot stands out from the rest: the iconic view of the so-called “Pillars of Creation.” The jaw-dropping photo, taken in 1995, revealed never-before-seen details of three giant columns of cold gas bathed in the scorching ultraviolet light from a cluster of young, massive stars in a small region of the Eagle Nebula, or M16.
Credit: Hubble Site

Our Sun probably formed in a similar turbulent star-forming region. There is evidence that the forming solar system was seasoned with radioactive shrapnel from a nearby supernova. That means that our Sun was formed as part of a cluster that included stars massive enough to produce powerful ionizing radiation, such as is seen in the Eagle Nebula. “That’s the only way the nebula from which the Sun was born could have been exposed to a supernova that quickly, in the short period of time that represents, because supernovae only come from massive stars, and those stars only live a few tens of millions of years,” Scowen explained. “What that means is when you look at the environment of the Eagle Nebula or other star-forming regions, you’re looking at exactly the kind of nascent environment that our Sun formed in.”
Hubble Revisits the Famous
Source: Hubblesite.org
Source: Hubble Site

Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel

NASA’s Chandra Weighs Most Massive Galaxy Cluster in Distant Universe

Using NASA’s Chandra X-ray Observatory, astronomers have made the first determination of the mass and other properties of a very young, distant galaxy cluster.

The Chandra study shows that the galaxy cluster, seen at the comparatively young age of about 800 million years, is the most massive known cluster with that age or younger. As the largest gravitationally- bound structures known, galaxy clusters can act as crucial gauges for how the Universe itself has evolved over time.

The galaxy cluster was originally discovered using ESA’s XMM-Newton observatory and is located about 9.6 billion light years from Earth. Astronomers used X-ray data from Chandra that, when combined with scientific models, provides an accurate weight of the cluster, which comes in at a whopping 400 trillion times the mass of the Sun. Scientists believe the cluster formed about 3.3 billion years after the Big Bang.

Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel
Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel

The cluster is officially named XDCP J0044.0-2033, but the researchers have nicknamed it “Gioiello”, which is Italian for “jewel”. They chose this name because an image of the cluster contains many sparkling colors from the hot, X-ray emitting gas and various star-forming galaxies within the cluster. Also, the research team met to discuss the Chandra data for the first time at Villa il Gioiello, a 15th century villa near the Observatory of Arcetri, which was the last residence of prominent Italian astronomer Galileo Galilei.

“Finding this enormous galaxy cluster at this early epoch means that there could be more out there,” said Paolo Tozzi of the National Institute for Astrophysics (INAF) in Florence, Italy, who led the new study. “This kind of information could have an impact on our understanding of how the large scale structure of the Universe formed and evolved.”

Previously, astronomers had found an enormous galaxy cluster, known as “El Gordo,” at a distance of 7 billion light years away and a few other large, distant clusters. According to the best current model for how the Universe evolved, there is a low chance of finding clusters as massive as the Gioiello Cluster and El Gordo. The new findings suggest that there might be problems with the theory, and are enticing astronomers to look for other distant and massive clusters.

“The hint that there might be problems with the standard model of cosmology is interesting,” said co-author James Jee of the University of California in Davis, “but we need bigger and deeper samples of clusters before we can tell if there’s a real problem.”

The Chandra observation of the Gioiello Cluster lasted over 4 days and is the deepest X-ray observation yet made on a cluster beyond a distance of about 8 billion light years.

“Unlike the galaxy clusters that are close to us, this cluster still has lots of stars forming within its galaxies,” said co-author Joana Santos, also from INAF in Florence. “This gives us a unique window into what galaxy clusters are like when they are very young.”

 

In the past, astronomers have reported finding several galaxy cluster candidates that are located more than 9.5 billion light years away. However, some of these objects turned out to be protoclusters, that is, precursors to fully developed galaxy clusters.

The researchers also note that there are hints of uneven structure in the hot gas. These may be large clumps that could have been caused by collisions and mergers with smaller clusters of galaxies and provides clues to how the cluster became so hefty at its early age. The authors expect that the cluster is still young enough to be undergoing many such interactions.

A paper describing these results will appear in an upcoming issue of The Astrophysical Journal and is available online. NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra’s science and flight operations.

An interactive image, a podcast, and a video about these findings are available at:
http://chandra.si.edu

For Chandra images, multimedia and related materials, visit:
http://www.nasa.gov/chandra

 

Source: Chandra X-Ray Observatory