Tag Archives: Organic

Complex Organic Molecules Discovered in Infant Star System

The new discovery hints that the building blocks of the chemistry of life are universal.


For the first time, astronomers have detected the presence of complex organic molecules, the building blocks of life, in a protoplanetary disc surrounding a young star. The discovery, made with the Atacama Large Millimeter/submillimeter Array (ALMA), reaffirms that the conditions that spawned the Earth and Sun are not unique in the Universe. The results are published in the 9 April 2015 issue of the journal Nature.

Artist impression of the protoplanetary disc surrounding the young star MWC 480. ALMA has detected the complex organic molecule methyl cyanide in the outer reaches of the disc in the region where comets are believed to form. This is another indication that complex organic chemistry, and potentially the conditions necessary for life, is universal. Credit: B. Saxton (NRAO/AUI/NSF)
Artist impression of the protoplanetary disc surrounding the young star MWC 480. ALMA has detected the complex organic molecule methyl cyanide in the outer reaches of the disc in the region where comets are believed to form. This is another indication that complex organic chemistry, and potentially the conditions necessary for life, is universal.
Credit:
B. Saxton (NRAO/AUI/NSF)

The new ALMA observations reveal that the protoplanetary disc surrounding the young star MWC 480 [1] contains large amounts of methyl cyanide (CH3CN), a complex carbon-based molecule. There is enough methyl cyanide around MWC 480 to fill all of Earth’s oceans.

Both this molecule and its simpler cousin hydrogen cyanide (HCN) were found in the cold outer reaches of the star’s newly formed disc, in a region that astronomers believe is analogous to the Kuiper Belt — the realm of icy planetesimals and comets in our own Solar System beyond Neptune.

Comets retain a pristine record of the early chemistry of the Solar System, from the period of planet formation. Comets and asteroids from the outer Solar System are thought to have seeded the young Earth with water and organic molecules, helping set the stage for the development of primordial life.

“Studies of comets and asteroids show that the solar nebula that spawned the Sun and planets was rich in water and complex organic compounds,” noted Karin Öberg, an astronomer with the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, USA, and lead author of the new paper.

“We now have even better evidence that this same chemistry exists elsewhere in the Universe, in regions that could form solar systems not unlike our own.” This is particularly intriguing, Öberg notes, since the molecules found in MWC 480 are also found in similar concentrations in the Solar System’s comets.

The star MWC 480, which is about twice the mass of the Sun, is located 455 light-years away in the Taurus star-forming region. Its surrounding disc is in the very early stages of development — having recently coalesced out of a cold, dark nebula of dust and gas. Studies with ALMA and other telescopes have yet to detect any obvious signs of planet formation in it, although higher resolution observations may reveal structures similar to HL Tauri, which is of a similar age.

Astronomers have known for some time that cold, dark interstellar clouds are very efficient factories for complex organic molecules — including a group of molecules known as cyanides. Cyanides, and most especially methyl cyanide, are important because they contain carbon–nitrogen bonds, which are essential for the formation of amino acids, the foundation of proteins and the building blocks of life.

Until now, it has remained unclear, however, if these same complex organic molecules commonly form and survive in the energetic environment of a newly forming solar system, where shocks and radiation can easily break chemical bonds.

By exploiting ALMA’s remarkable sensitivity [2] astronomers can see from the latest observations that these molecules not only survive, but flourish.

Importantly, the molecules ALMA detected are much more abundant than would be found in interstellar clouds. This tells astronomers that protoplanetary discs are very efficient at forming complex organic molecules and that they are able to form them on relatively short timescales [3].

As this system continues to evolve, astronomers speculate that it’s likely that the organic molecules safely locked away in comets and other icy bodies will be ferried to environments more nurturing to life.

“From the study of exoplanets, we know the Solar System isn’t unique in its number of planets or abundance of water,” concluded Öberg. “Now we know we’re not unique in organic chemistry. Once more, we have learnt that we’re not special. From a life in the Universe point of view, this is great news.”

Notes
[1] This star is only about one million years old. By comparison the Sun is more than four billion years old. The name MWC 480 refers to the Mount Wilson Catalog of B and A stars with bright hydrogen lines in their spectra.

[2] ALMA is able to detect the faint millimetre-wavelength radiation that is naturally emitted by molecules in space. For these most recent observations, the astronomers used only a portion of ALMA’s 66 antennas when the telescope was in its lower-resolution configuration. Further studies of this and other protoplanetary discs with ALMA’s full capabilities will reveal additional details about the chemical and structural evolution of stars and planets.

[3] This rapid formation is essential to outpace the forces that would otherwise break the molecules apart. Also, these molecules were detected in a relatively serene part of the disc, roughly 4.5 to 15 billion kilometres from the central star. Though very distant by Solar System standards, in MWC 480’s scaled-up dimensions, this would be squarely in the comet-forming zone.

Source: ESO

 

The art of translating science into business

“There are many things which can go wrong when starting a company; but the worst thing that can go wrong is to not do it,” said Prof. Karl Leo, Director of KAUST’s Solar & Photovoltaics Engineering Research Center, when speaking at an Entrepreneurship Center speaker series event this past spring. Wearing the dual hats of scientist and entrepreneur, Prof. Leo is the author of 440 publications, holds more than 50 patents, and has co-created 8 companies which have generated over 300 jobs.

A physicist by training, Prof. Leo highlighted the point that he is primarily a scientist who stumbled onto business by chance. “For me it’s always started with and been about the science,” he says. All his spin-off companies came about as a result of basic research he and his group conducted on organic semiconductors. Speaking specifically to the young KAUST researchers hoping to emulate his success as academics and entrepreneurs, Prof. Leo said: “The message I want to pass along is if you really want to do things, just be curious. Don’t say I want to do research to make a company. Do very basic research and the spin-off ideas will come along.”

The Growing Influence of Organic Semiconductors

Prof. Karl Leo started doing research on organic semiconductors about 20 years ago. He has since been passionate about this field’s developments and future potential. Despite his early skepticism resulting from the ephemeral lifetime of organic semiconductors in the ’90s, the performance levels of LED devices for instance have gone from just a few minutes of useful life then to virtually not aging today. “In the long-term, as in 20 to 30 years from now, almost everything will be organics,” he believes. “Silicon has dominated electronics for a long time but organic is something new.” Organic products have evolved into a variety of applications such as: small OLED displays, OLED televisions, OLED lighting, OPV and organic electronics.

Organics, as opposed to traditional silicon-based semiconductors, are by nature essentially lousy semiconductors. Mobility, or the speed at which electrons move on these materials, is a really important property. However, when looking at the electronic properties of semiconductors, carbon offers interesting developments for the performance of organics. For instance, graphene, which is a carbon-based organic material, has even higher mobility than silicon.

One of the companies Prof. Karl Leo co-founded and began operating out of Dresden, Germany in 2003, Novaled, became a leader in in organic light-emitting diode (OLED) field. OLEDs are made up of multiple thin layers of organic materials, known as OLED stacks. They essentially emit light when electricity is applied to them. Novaled became a pioneer in developing highly efficient and long-lifetime OLED structures; and it currently holds the world record in power efficiency. They key to Novaled’s success, as Prof. Leo explains, is “the simple discovery that you can dope organics.” This was a major breakthrough achieved simply adding a very little amount of another molecule.

This organic conductivity doping technology, used to enhance the performance of OLED devices, was the main factor leading to the company being purchased by Samsung in 2013.

Organic Photovoltaics: Technology of the Future

Following the successful commercial penetration of OLED displays in the consumer electronics market, Prof. Karl Leo has since turned his focus on organic photovoltaics. “I think organic PV is something that can change the world,” said Leo. Among the many advantages of organic photovoltaics are that they are thin organic layers which can be applied on flexible plastic substrates. They consume little energy, can be made transparent, and are compatible with low-cost large-area production technologies. Because they are transparent, they can be made into windows for instance, and also be manufactured in virtually any color. All these characteristics make organic PV ideal for consumer products.

Again based on basic research conducted by his group, Prof. Leo also started a company,Heliatek, which is now a world-leader in the production of organic solar film. Heliatek has developed the current world record in the efficiency of transparent solar cells. The company also holds the record for efficiency of opaque cells at 12 percent. Leo believes that it’s possible to achieve up to 20 percent efficiency in the near future, which will be necessary to compete with silicon and become commercially viable.

Don’t Believe Business Plans

Prof. Leo explained that the experience he and his team gained from launching a successful company like Novaled helped them to both define the objectives and obtain funding from investors for his solar cell company, Heliatek. “Once you create a successful company, things get much easier,” he said. But Leo also cautioned the budding entrepreneurs in the audience to be willing to adapt as they present and implement their ideas.

“If you have a good idea and you are convinced you have a good idea, never give up,” he said. But being able to adapt to market needs is also crucial. For instance, Leo’s original business plan for Novaled focused on manufacturing displays. But the realities of the market, and the prohibitive cost of manufacturing displays, convinced his team that the smarter way to go was to supply materials. At the end of the day, what really succeeded in getting a venture capital firm’s attention, after haven been told no 49 times, was his team’s ability to demonstrate the value of the technology.

“Business plans are useful but they must not be overestimated,” said Prof. Leo. Business plans are a good indicator of how entrepreneurs are able to structure their thoughts, identify markets and create a roadmap, but “nobody is able to predict the future in a business plan; it’s not possible.”

Source: KUST