Tag Archives: photons

The first ever photograph of light as both a particle and wave

Light behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior.

ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior. Credit:EPFL
ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior.
Credit:EPFL

Quantum mechanics tells us that light can behave simultaneously as a particle or a wave. However, there has never been an experiment able to capture both natures of light at the same time; the closest we have come is seeing either wave or particle, but always at different times. Taking a radically different experimental approach, EPFL scientists have now been able to take the first ever snapshot of light behaving both as a wave and as a particle. The breakthrough work is published in Nature Communications.

When UV light hits a metal surface, it causes an emission of electrons. Albert Einstein explained this “photoelectric” effect by proposing that light – thought to only be a wave – is also a stream of particles. Even though a variety of experiments have successfully observed both the particle- and wave-like behaviors of light, they have never been able to observe both at the same time. 

 Alternate Link on YTPAK: http://www.ytpak.com/?component=video&task=view&id=UQ-qseLBnxc

A new approach on a classic effect

A research team led by Fabrizio Carbone at EPFL has now carried out an experiment with a clever twist: using electrons to image light. The researchers have captured, for the first time ever, a single snapshot of light behaving simultaneously as both a wave and a stream of particles particle.

The experiment is set up like this: A pulse of laser light is fired at a tiny metallic nanowire. The laser adds energy to the charged particles in the nanowire, causing them to vibrate. Light travels along this tiny wire in two possible directions, like cars on a highway. When waves traveling in opposite directions meet each other they form a new wave that looks like it is standing in place. Here, this standing wave becomes the source of light for the experiment, radiating around the nanowire.

This is where the experiment’s trick comes in: The scientists shot a stream of electrons close to the nanowire, using them to image the standing wave of light. As the electrons interacted with the confined light on the nanowire, they either sped up or slowed down. Using the ultrafast microscope to image the position where this change in speed occurred, Carbone’s team could now visualize the standing wave, which acts as a fingerprint of the wave-nature of light.

While this phenomenon shows the wave-like nature of light, it simultaneously demonstrates its particle aspect as well. As the electrons pass close to the standing wave of light, they “hit” the light’s particles, the photons. As mentioned above, this affects their speed, making them move faster or slower. This change in speed appears as an exchange of energy “packets” (quanta) between electrons and photons. The very occurrence of these energy packets shows that the light on the nanowire behaves as a particle.

“This experiment demonstrates that, for the first time ever, we can film quantum mechanics – and its paradoxical nature – directly,” says Fabrizio Carbone. In addition, the importance of this pioneering work can extend beyond fundamental science and to future technologies. As Carbone explains: “Being able to image and control quantum phenomena at the nanometer scale like this opens up a new route towards quantum computing.”

This work represents a collaboration between the Laboratory for Ultrafast Microscopy and Electron Scattering of EPFL, the Department of Physics of Trinity College (US) and the Physical and Life Sciences Directorate of the Lawrence Livermore National Laboratory. The imaging was carried out EPFL’s ultrafast energy-filtered transmission electron microscope – one of the two in the world.

Reference

Piazza L, Lummen TTA, Quiñonez E, Murooka Y, Reed BW, Barwick B, Carbone F.Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nature Communications 02 March 2015. DOI: 10.1038/ncomms7407

Source: EPFL

Trapping light with a twister

New understanding of how to halt photons could lead to miniature particle accelerators, improved data transmission.

By David L. Chandler


Researchers at MIT who succeeded last year in creating a material that could trap light and stop it in its tracks have now developed a more fundamental understanding of the process. The new work — which could help explain some basic physical mechanisms — reveals that this behavior is connected to a wide range of other seemingly unrelated phenomena.

The findings are reported in a paper in the journal Physical Review Letters, co-authored by MIT physics professor Marin Soljačić; postdocs Bo Zhen, Chia Wei Hsu, and Ling Lu; and Douglas Stone, a professor of applied physics at Yale University.

Light can usually be confined only with mirrors, or with specialized materials such as photonic crystals. Both of these approaches block light beams; last year’s finding demonstrated a new method in which the waves cancel out their own radiation fields. The new work shows that this light-trapping process, which involves twisting the polarization direction of the light, is based on a kind of vortex — the same phenomenon behind everything from tornadoes to water swirling down a drain.

Vortices of bound states in the continuum. The left panel shows five bound states in the continuum in a photonic crystal slab as bright spots. The right panel shows the polarization vector field in the same region as the left panel, revealing five vortices at the locations of the bound states in the continuum. These vortices are characterized with topological charges +1 or -1. Courtesy of the researchers Source: MIT
Vortices of bound states in the continuum. The left panel shows five bound states in the continuum in a photonic crystal slab as bright spots. The right panel shows the polarization vector field in the same region as the left panel, revealing five vortices at the locations of the bound states in the continuum. These vortices are characterized with topological charges +1 or -1.
Courtesy of the researchers
Source: MIT

In addition to revealing the mechanism responsible for trapping the light, the new analysis shows that this trapped state is much more stable than had been thought, making it easier to produce and harder to disturb.

“People think of this [trapped state] as very delicate,” Zhen says, “and almost impossible to realize. But it turns out it can exist in a robust way.”

In most natural light, the direction of polarization — which can be thought of as the direction in which the light waves vibrate — remains fixed. That’s the principle that allows polarizing sunglasses to work: Light reflected from a surface is selectively polarized in one direction; that reflected light can then be blocked by polarizing filters oriented at right angles to it.

But in the case of these light-trapping crystals, light that enters the material becomes polarized in a way that forms a vortex, Zhen says, with the direction of polarization changing depending on the beam’s direction.

Because the polarization is different at every point in this vortex, it produces a singularity — also called a topological defect, Zhen says — at its center, trapping the light at that point.

Hsu says the phenomenon makes it possible to produce something called a vector beam, a special kind of laser beam that could potentially create small-scale particle accelerators. Such devices could use these vector beams to accelerate particles and smash them into each other — perhaps allowing future tabletop devices to carry out the kinds of high-energy experiments that today require miles-wide circular tunnels.

The finding, Soljačić says, could also enable easy implementation of super-resolution imaging (using a method called stimulated emission depletion microscopy) and could allow the sending of far more channels of data through a single optical fiber.

“This work is a great example of how supposedly well-studied physical systems can contain rich and undiscovered phenomena, which can be unearthed if you dig in the right spot,” says Yidong Chong, an assistant professor of physics and applied physics at Nanyang Technological University in Singapore who was not involved in this research.

Chong says it is remarkable that such surprising findings have come from relatively well-studied materials. “It deals with photonic crystal slabs of the sort that have been extensively analyzed, both theoretically and experimentally, since the 1990s,” he says. “The fact that the system is so unexotic, together with the robustness associated with topological phenomena, should give us confidence that these modes will not simply

be theoretical curiosities, but can be exploited in technologies such as microlasers.”

The research was partly supported by the U.S. Army Research Office through MIT’s Institute for Soldier Nanotechnologies, and by the Department of Energy and the National Science Foundation.

Source: MIT News Office