Tag Archives: planetary

eso1523a

A Celestial Butterfly Emerges from its Dusty Cocoon

eso1523aSPHERE reveals earliest stage of planetary nebula formation


Some of the sharpest images ever made with ESO’s Very Large Telescope (VLT) have, for the first time, revealed what appears to be an ageing star giving birth to a butterfly-like planetary nebula. These observations of the red giant star L2 Puppis, from the ZIMPOL mode of the newly installed SPHERE instrument, also clearly showed a close companion. The dying stages of stars continue to pose astronomers with many riddles, and the origin of such bipolar nebulae, with their complex and alluring hourglass figures, doubly so. This new imaging mode means that the VLT is currently the sharpest astronomical direct imaging instrument in existence.

At about 200 light-years away, L2 Puppis is one of the closest red giants to Earth known to be entering its final stages of life. The new observations with the ZIMPOL mode of SPHERE were made in visible light using extreme adaptive optics, which corrects images to a much higher degree than standard adaptive optics, allowing faint objects and structures close to bright sources of light to be seen in greater detail. They are the first published results from this mode and the most detailed of such a star.

ZIMPOL can produce images that are three times sharper than those from the NASA/ESA Hubble Space Telescope, and the new observations show the dust that surrounds L2 Puppis in exquisite detail [1]. They confirm earlier findings, made using NACO, of the dust being arranged in a disc, which from Earth is seen almost completely edge-on, but provide a much more detailed view. The polarisation information from ZIMPOL also allowed the team to construct a three dimensional model of the dust structures [2].

The astronomers found the dust disc to begin about 900 million kilometres from the star — slightly farther than the distance from the Sun to Jupiter — and discovered that it flares outwards, creating a symmetrical, funnel-like shape surrounding the star. The team also observed a second source of light about 300 million kilometres — twice the distance from Earth to the Sun — from L2 Puppis. This very close companion star is likely to be another red giant of slightly lower mass, but less evolved.

The combination of a large amount of dust surrounding a slowly dying star, along with the presence of a companion star, mean that this is exactly the type of system expected to create a bipolar planetary nebula. These three elements seem to be necessary, but a considerable amount of good fortune is also still required if they are to lead to the subsequent emergence of a celestial butterfly from this dusty chrysalis.

Lead author of the paper, Pierre Kervella, explains: “The origin of bipolar planetary nebulae is one of the great classic problems of modern astrophysics, especially the question of how, exactly, stars return their valuable payload of metals back into space — an important process, because it is this material that will be used to produce later generations of planetary systems.”

In addition to L2 Puppis’s flared disc, the team found two cones of material, which rise out perpendicularly to the disc. Importantly, within these cones, they found two long, slowly curving plumes of material. From the origin points of these plumes, the team deduces that one is likely to be the product of the interaction between the material from L2 Puppis and the companions star’s wind and radiation pressure, while the other is likely to have arisen from a collision between the stellar winds from the two stars, or be the result of an accretion disc around the companion star.

Although much is still to be understood, there are two leading theories of bipolar planetary nebulae, both relying on the existence of a binary star system [3]. The new observations suggest that both of these processes are in action around L2 Puppis, making it appear very probable that the pair of stars will, in time, give birth to a butterfly.

Pierre Kervella concludes: “With the companion star orbiting L2 Puppis only every few years, we expect to see how the companion star shapes the red giant’s disc. It will be possible to follow the evolution of the dust features around the star in real time — an extremely rare and exciting prospect.”

Notes
[1] SPHERE/ZIMPOL use extreme adaptive optics to create diffraction-limited images, which come a lot closer than previous adaptive optics instruments to achieving the theoretical limit of the telescope if there were no atmosphere. Extreme adaptive optics also allows much fainter objects to be seen very close to a bright star. These images are also taken in visible light — shorter wavelengths than the near-infrared regime, where most earlier adaptive optics imaging was performed. These two factors result in significantly sharper images than earlier VLT images. Even higher spatial resolution has been achieved with VLTI, but the interferometer does not create images directly.

[2] The dust in the disc was very efficient at scattering the stars’ light towards Earth and polarising it, a feature that the team could use to create a three-dimensional map of the envelope using both ZIMPOL and NACO data and a disc model based on the RADMC-3D radiative transfer modeling tool, which uses a given set of parameters for the dust to simulate photons propagating through it.

[3] The first theory is that the dust produced by the primary, dying star’s stellar wind is confined to a ring-like orbit about the star by the stellar winds and radiation pressure produced by the companion star. Any further mass lost from the main star is then funneled, or collimated, by this disc, forcing the material to move outwards in two opposing columns perpendicular to the disc.

The second holds that most of the material being ejected by the dying star is accreted by its nearby companion, which begins to form an accretion disc and a pair of powerful jets. Any remaining material is pushed away by the dying star’s stellar winds, forming an encompassing cloud of gas and dust, as would normally occur in a single star system. The companion star’s newly created bipolar jets, moving with much greater force than the stellar winds of the dying star, then carve dual cavities through the surrounding dust, resulting in the characteristic appearance of a bipolar planetary nebula.

Source: ESO

A second minor planet may possess Saturn-like rings

Researchers detect features around Chiron that may signal rings, jets, or a shell of dust.

By Jennifer Chu


CAMBRIDGE, Mass. – There are only five bodies in our solar system that are known to bear rings. The most obvious is the planet Saturn; to a lesser extent, rings of gas and dust also encircle Jupiter, Uranus, and Neptune. The fifth member of this haloed group is Chariklo, one of a class of minor planets called centaurs: small, rocky bodies that possess qualities of both asteroids and comets.

Scientists only recently detected Chariklo’s ring system — a surprising finding, as it had been thought that centaurs are relatively dormant. Now scientists at MIT and elsewhere have detected a possible ring system around a second centaur, Chiron.

In November 2011, the group observed a stellar occultation in which Chiron passed in front of a bright star, briefly blocking its light. The researchers analyzed the star’s light emissions, and the momentary shadow created by Chiron, and identified optical features that suggest the centaur may possess a circulating disk of debris. The team believes the features may signify a ring system, a circular shell of gas and dust, or symmetric jets of material shooting out from the centaur’s surface.

“It’s interesting, because Chiron is a centaur — part of that middle section of the solar system, between Jupiter and Pluto, where we originally weren’t thinking things would be active, but it’s turning out things are quite active,” says Amanda Bosh, a lecturer in MIT’s Department of Earth, Atmospheric and Planetary Sciences.

Bosh and her colleagues at MIT — Jessica Ruprecht, Michael Person, and Amanda Gulbis — have published their results in the journal Icarus.

Catching a shadow

Chiron, discovered in 1977, was the first planetary body categorized as a centaur, after the mythological Greek creature — a hybrid of man and beast. Like their mythological counterparts, centaurs are hybrids, embodying traits of both asteroids and comets. Today, scientists estimate there are more than 44,000 centaurs in the solar system, concentrated mainly in a band between the orbits of Jupiter and Pluto.

While most centaurs are thought to be dormant, scientists have seen glimmers of activity from Chiron. Starting in the late 1980s, astronomers observed patterns of brightening from the centaur, as well as activity similar to that of a streaking comet.

In 1993 and 1994, James Elliot, then a professor of planetary astronomy and physics at MIT, observed a stellar occultation of Chiron and made the first estimates of its size. Elliot also observed features in the optical data that looked like jets of water and dust spewing from the centaur’s surface.

Now MIT researchers — some of them former members of Elliot’s group — have obtained more precise observations of Chiron, using two large telescopes in Hawaii: NASA’s Infrared Telescope Facility, on Mauna Kea, and the Las Cumbres Observatory Global Telescope Network, at Haleakala.

In 2010, the team started to chart the orbits of Chiron and nearby stars in order to pinpoint exactly when the centaur might pass across a star bright enough to detect. The researchers determined that such a stellar occultation would occur on Nov. 29, 2011, and reserved time on the two large telescopes in hopes of catching Chiron’s shadow.

“There’s an aspect of serendipity to these observations,” Bosh says. “We need a certain amount of luck, waiting for Chiron to pass in front of a star that is bright enough. Chiron itself is small enough that the event is very short; if you blink, you might miss it.”

The team observed the stellar occultation remotely, from MIT’s Building 54. The entire event lasted just a few minutes, and the telescopes recorded the fading light as Chiron cast its shadow over the telescopes.

Rings around a theory

The group analyzed the resulting light, and detected something unexpected. A simple body, with no surrounding material, would create a straightforward pattern, blocking the star’s light entirely. But the researchers observed symmetrical, sharp features near the start and end of the stellar occultation — a sign that material such as dust might be blocking a fraction of the starlight.

The researchers observed two such features, each about 300 kilometers from the center of the centaur. Judging from the optical data, the features are 3 and 7 kilometers wide, respectively.  The features are similar to what Elliot observed in the 1990s.

In light of these new observations, the researchers say that Chiron may still possess symmetrical jets of gas and dust, as Elliot first proposed. However, other interpretations may be equally valid, including the “intriguing possibility,” Bosh says, of a shell or ring of gas and dust.

Ruprecht, who is a researcher at MIT’s Lincoln Laboratory, says it is possible to imagine a scenario in which centaurs may form rings: For example, when a body breaks up, the resulting debris can be captured gravitationally around another body, such as Chiron. Rings can also be leftover material from the formation of Chiron itself.

“Another possibility involves the history of Chiron’s distance from the sun,” Ruprecht says. “Centaurs may have started further out in the solar system and, through gravitational interactions with giant planets, have had their orbits perturbed closer in to the sun. The frozen material that would have been stable out past Pluto is becoming less stable closer in, and can turn into gases that spray dust and material off the surface of a body. ”

An independent group has since combined the MIT group’s occultation data with other light data, and has concluded that the features around Chiron most likely represent a ring system. However, Ruprecht says that researchers will have to observe more stellar occultations of Chiron to truly determine which interpretation — rings, shell, or jets — is the correct one.

“If we want to make a strong case for rings around Chiron, we’ll need observations by multiple observers, distributed over a few hundred kilometers, so that we can map the ring geometry,” Ruprecht says. “But that alone doesn’t tell us if the rings are a temporary feature of Chiron, or a more permanent one. There’s a lot of work that needs to be done.”

Nevertheless, Bosh says the possibility of a second ringed centaur in the solar system is an enticing one.

“Until Chariklo’s rings were found, it was commonly believed that these smaller bodies don’t have ring systems,” Bosh says. “If Chiron has a ring system, it will show it’s more common than previously thought.”

This research was funded in part by NASA and the National Research Foundation of South Africa.

Source: MIT News Office

Artist’s impression of exocomets around Beta Pictoris. Credit: ESO

Two Families of Comets Found Around Nearby Star

Two Families of Comets Found Around Nearby Star


The HARPS instrument at ESO’s La Silla Observatory in Chile has been used to make the most complete census of comets around another star ever created. A French team of astronomers has studied nearly 500 individual comets orbiting the star Beta Pictoris and has discovered that they belong to two distinct families of exocomets: old exocomets that have made multiple passages near the star, and younger exocomets that probably came from the recent breakup of one or more larger objects. The new results will appear in the journal Nature on 23 October 2014.

Beta Pictoris is a young star located about 63 light-years from the Sun. It is only about 20 million years old and is surrounded by a huge disc of material — a very active young planetary system where gas and dust are produced by the evaporation of comets and the collisions of asteroids.

Artist’s impression of exocomets around Beta Pictoris. Credit: ESO
Artist’s impression of exocomets around Beta Pictoris. Credit: ESO

Flavien Kiefer (IAP/CNRS/UPMC), lead author of the new study sets the scene: “Beta Pictoris is a very exciting target! The detailed observations of its exocomets give us clues to help understand what processes occur in this kind of young planetary system.”

For almost 30 years astronomers have seen subtle changes in the light from Beta Pictoris that were thought to be caused by the passage of comets in front of the star itself. Comets are small bodies of a few kilometres in size, but they are rich in ices, which evaporate when they approach their star, producing gigantic tails of gas and dust that can absorb some of the light passing through them. The dim light from the exocomets is swamped by the light of the brilliant star so they cannot be imaged directly from Earth.

To study the Beta Pictoris exocomets, the team analysed more than 1000 observations obtained between 2003 and 2011 with the HARPS instrument on the ESO 3.6-metre telescope at the La Silla Observatory in Chile.

The researchers selected a sample of 493 different exocomets. Some exocomets were observed several times and for a few hours. Careful analysis provided measurements of the speed and the size of the gas clouds. Some of the orbital properties of each of these exocomets, such as the shape and the orientation of the orbit and the distance to the star, could also be deduced.

This analysis of several hundreds of exocomets in a single exo-planetary system is unique. It revealed the presence of two distinct families of exocomets: one family of old exocomets whose orbits are controlled by a massive planet [1], and another family, probably arising from the recent breakdown of one or a few bigger objects. Different families of comets also exist in the Solar System.

The exocomets of the first family have a variety of orbits and show a rather weak activity with low production rates of gas and dust. This suggests that these comets have exhausted their supplies of ices during their multiple passages close to Beta Pictoris [2].

The exocomets of the second family are much more active and are also on nearly identical orbits [3]. This suggests that the members of the second family all arise from the same origin: probably the breakdown of a larger object whose fragments are on an orbit grazing the star Beta Pictoris.

Flavien Kiefer concludes: “For the first time a statistical study has determined the physics and orbits for a large number of exocomets. This work provides a remarkable look at the mechanisms that were at work in the Solar System just after its formation 4.5 billion years ago.”

Notes

[1] A giant planet, Beta Pictoris b, has also been discovered in orbit at about a billion kilometres from the star and studied using high resolution images obtained with adaptive optics.

[2] Moreover, the orbits of these comets (eccentricity and orientation) are exactly as predicted for comets trapped inorbital resonance with a massive planet. The properties of the comets of the first family show that this planet in resonance must be at about 700 million kilometres from the star  — close to where the planet Beta Pictoris b was discovered.

[3] This makes them similar to the comets of the Kreutz family in the Solar System, or the fragments of Comet Shoemaker-Levy 9, which impacted Jupiter in July 1994.

Source: ESO