Tag Archives: polarization

Polarisation of the Cosmic Microwave Background

Credit: ESA/PLANCK

PLANCK Reveals First Starts Were Formed Much Later Than Previously Thought

New maps from ESA’s Planck satellite uncover the ‘polarised’ light from the early Universe across the entire sky, revealing that the first stars formed much later than previously thought.

The history of our Universe is a 13.8 billion-year tale that scientists endeavour to read by studying the planets, asteroids, comets and other objects in our Solar System, and gathering light emitted by distant stars, galaxies and the matter spread between them.

Polarisation of the Cosmic Microwave Background Credit: ESA/PLANCK
Polarisation of the Cosmic Microwave Background
Credit: ESA/PLANCK

A major source of information used to piece together this story is the Cosmic Microwave Background, or CMB, the fossil light resulting from a time when the Universe was hot and dense, only 380 000 years after the Big Bang.

Thanks to the expansion of the Universe, we see this light today covering the whole sky at microwave wavelengths.

Between 2009 and 2013, Planck surveyed the sky to study this ancient light in unprecedented detail. Tiny differences in the background’s temperature trace regions of slightly different density in the early cosmos, representing the seeds of all future structure, the stars and galaxies of today.

Scientists from the Planck collaboration have published the results from the analysis of these data in a large number of scientific papers over the past two years, confirming the standard cosmological picture of our Universe with ever greater accuracy.

History of the Universe Credit:ESA
History of the Universe
Credit:ESA

“But there is more: the CMB carries additional clues about our cosmic history that are encoded in its ‘polarisation’,” explains Jan Tauber, ESA’s Planck project scientist.

“Planck has measured this signal for the first time at high resolution over the entire sky, producing the unique maps released today.”

Light is polarised when it vibrates in a preferred direction, something that may arise as a result of photons – the particles of light – bouncing off other particles. This is exactly what happened when the CMB originated in the early Universe.

Initially, photons were trapped in a hot, dense soup of particles that, by the time the Universe was a few seconds old, consisted mainly of electrons, protons and neutrinos. Owing to the high density, electrons and photons collided with one another so frequently that light could not travel any significant distant before bumping into another electron, making the early Universe extremely ‘foggy’.

Slowly but surely, as the cosmos expanded and cooled, photons and the other particles grew farther apart, and collisions became less frequent.

This had two consequences: electrons and protons could finally combine and form neutral atoms without them being torn apart again by an incoming photon, and photons had enough room to travel, being no longer trapped in the cosmic fog.

Once freed from the fog, the light was set on its cosmic journey that would take it all the way to the present day, where telescopes like Planck detect it as the CMB. But the light also retains a memory of its last encounter with the electrons, captured in its polarisation.

“The polarisation of the CMB also shows minuscule fluctuations from one place to another across the sky: like the temperature fluctuations, these reflect the state of the cosmos at the time when light and matter parted company,” says François Bouchet of the Institut d’Astrophysique de Paris, France.

“This provides a powerful tool to estimate in a new and independent way parameters such as the age of the Universe, its rate of expansion and its essential composition of normal matter, dark matter and dark energy.”

Planck’s polarisation data confirm the details of the standard cosmological picture determined from its measurement of the CMB temperature fluctuations, but add an important new answer to a fundamental question: when were the first stars born?

“After the CMB was released, the Universe was still very different from the one we live in today, and it took a long time until the first stars were able to form,” explains Marco Bersanelli of Università degli Studi di Milano, Italy.

“Planck’s observations of the CMB polarisation now tell us that these ‘Dark Ages’ ended some 550 million years after the Big Bang – more than 100 million years later than previously thought.

“While these 100 million years may seem negligible compared to the Universe’s age of almost 14 billion years, they make a significant difference when it comes to the formation of the first stars.”

The Dark Ages ended as the first stars began to shine. And as their light interacted with gas in the Universe, more and more of the atoms were turned back into their constituent particles: electrons and protons.

This key phase in the history of the cosmos is known as the ‘epoch of reionisation’.

The newly liberated electrons were once again able to collide with the light from the CMB, albeit much less frequently now that the Universe had significantly expanded. Nevertheless, just as they had 380 000 years after the Big Bang, these encounters between electrons and photons left a tell-tale imprint on the polarisation of the CMB.

“From our measurements of the most distant galaxies and quasars, we know that the process of reionisation was complete by the time that the Universe was about 900 million years old,” says George Efstathiou of the University of Cambridge, UK.

“But, at the moment, it is only with the CMB data that we can learn when this process began.”

Planck’s new results are critical, because previous studies of the CMB polarisation seemed to point towards an earlier dawn of the first stars, placing the beginning of reionisation about 450 million years after the Big Bang.

This posed a problem. Very deep images of the sky from the NASA–ESA Hubble Space Telescope have provided a census of the earliest known galaxies in the Universe, which started forming perhaps 300–400 million years after the Big Bang.

However, these would not have been powerful enough to succeed at ending the Dark Ages within 450 million years.

“In that case, we would have needed additional, more exotic sources of energy to explain the history of reionisation,” says Professor Efstathiou.

The new evidence from Planck significantly reduces the problem, indicating that reionisation started later than previously believed, and that the earliest stars and galaxies alone might have been enough to drive it.

This later end of the Dark Ages also implies that it might be easier to detect the very first generation of galaxies with the next generation of observatories, including the James Webb Space Telescope.

But the first stars are definitely not the limit. With the new Planck data released today, scientists are also studying the polarisation of foreground emission from gas and dust in the Milky Way to analyse the structure of the Galactic magnetic field.

The data have also enabled new important insights into the early cosmos and its components, including the intriguing dark matter and the elusive neutrinos, as described in papers also released today.

The Planck data have delved into the even earlier history of the cosmos, all the way to inflation – the brief era of accelerated expansion that the Universe underwent when it was a tiny fraction of a second old. As the ultimate probe of this epoch, astronomers are looking for a signature of gravitational waves triggered by inflation and later imprinted on the polarisation of the CMB.

No direct detection of this signal has yet been achieved, as reported last week. However, when combining the newest all-sky Planck data with those latest results, the limits on the amount of primordial gravitational waves are pushed even further down to achieve the best upper limits yet.

“These are only a few highlights from the scrutiny of Planck’s observations of the CMB polarisation, which is revealing the sky and the Universe in a brand new way,” says Jan Tauber.

“This is an incredibly rich data set and the harvest of discoveries has just begun.”

A series of scientific papers describing the new results was published on 5 February and it can be downloaded here.

The new results from Planck are based on the complete surveys of the entire sky, performed between 2009 and 2013. New data, including temperature maps of the CMB at all nine frequencies observed by Planck and polarisation maps at four frequencies (30, 44, 70 and 353 GHz), are also released today.

The three principal scientific leaders of the Planck mission, Nazzareno Mandolesi, Jean-Loup Puget and Jan Tauber, were recently awarded the 2015 EPS Edison Volta Prize for “directing the development of the Planck payload and the analysis of its data, resulting in the refinement of our knowledge of the temperature fluctuations in the Cosmic Microwave Background as a vastly improved tool for doing precision cosmology at unprecedented levels of accuracy, and consolidating our understanding of the very early universe.

More about Planck

Launched in 2009, Planck was designed to map the sky in nine frequencies using two state-of-the-art instruments: the Low Frequency Instrument (LFI), which includes three frequency bands in the range 30–70 GHz, and the High Frequency Instrument (HFI), which includes six frequency bands in the range 100–857 GHz.

HFI completed its survey in January 2012, while LFI continued to make science observations until 3 October 2013, before being switched off on 19 October 2013. Seven of Planck’s nine frequency channels were equipped with polarisation-sensitive detectors.

The Planck Scientific Collaboration consists of all the scientists who have contributed to the development of the mission, and who participate in the scientific exploitation of the data during the proprietary period.

These scientists are members of one or more of four consortia: the LFI Consortium, the HFI Consortium, the DK-Planck Consortium, and ESA’s Planck Science Office. The two European-led Planck Data Processing Centres are located in Paris, France and Trieste, Italy.

The LFI consortium is led by N. Mandolesi, Università degli Studi di Ferrara, Italy (deputy PI: M. Bersanelli, Università degli Studi di Milano, Italy), and was responsible for the development and operation of LFI. The HFI consortium is led by J.L. Puget, Institut d’Astrophysique Spatiale in Orsay (CNRS/Université Paris-Sud), France (deputy PI: F. Bouchet, Institut d’Astrophysique de Paris (CNRS/UPMC), France), and was responsible for the development and operation of HFI.

Source: ESA

This artist's impression shows schematically the mysterious alignments between the spin axes of quasars and the large-scale structures that they inhabit that observations with ESO’s Very Large Telescope have revealed. These alignments are over billions of light-years and are the largest known in the Universe.

The large-scale structure is shown in blue and quasars are marked in white with the rotation axes of their black holes indicated with a line.

This picture is for illustration only and does not depict the real distribution of galaxies and quasars.

Credit:

ESO/M. Kornmesser

Spooky Alignment of Quasars Across Billions of Light-years

VLT reveals alignments between supermassive black hole axes and large-scale structure


New observations with ESO’s Very Large Telescope (VLT) in Chile have revealed alignments over the largest structures ever discovered in the Universe. A European research team has found that the rotation axes of the central supermassive black holes in a sample of quasars are parallel to each other over distances of billions of light-years. The team has also found that the rotation axes of these quasars tend to be aligned with the vast structures in the cosmic web in which they reside.

Quasars are galaxies with very active supermassive black holes at their centres. These black holes are surrounded by spinning discs of extremely hot material that is often spewed out in long jets along their axes of rotation. Quasars can shine more brightly than all the stars in the rest of their host galaxies put together.

This artist's impression shows schematically the mysterious alignments between the spin axes of quasars and the large-scale structures that they inhabit that observations with ESO’s Very Large Telescope have revealed. These alignments are over billions of light-years and are the largest known in the Universe. The large-scale structure is shown in blue and quasars are marked in white with the rotation axes of their black holes indicated with a line. This picture is for illustration only and does not depict the real distribution of galaxies and quasars. Credit: ESO/M. Kornmesser
This artist’s impression shows schematically the mysterious alignments between the spin axes of quasars and the large-scale structures that they inhabit that observations with ESO’s Very Large Telescope have revealed. These alignments are over billions of light-years and are the largest known in the Universe.
The large-scale structure is shown in blue and quasars are marked in white with the rotation axes of their black holes indicated with a line.
This picture is for illustration only and does not depict the real distribution of galaxies and quasars.
Credit:
ESO/M. Kornmesser

A team led by Damien Hutsemékers from the University of Liège in Belgium used the FORS instrument on the VLT to study 93 quasars that were known to form huge groupings spread over billions of light-years, seen at a time when the Universe was about one third of its current age.

The first odd thing we noticed was that some of the quasars’ rotation axes were aligned with each other — despite the fact that these quasars are separated by billions of light-years,” said Hutsemékers.

The team then went further and looked to see if the rotation axes were linked, not just to each other, but also to the structure of the Universe on large scales at that time.

When astronomers look at the distribution of galaxies on scales of billions of light-years they find that they are not evenly distributed. They form a cosmic web of filaments and clumps around huge voids where galaxies are scarce. This intriguing and beautiful arrangement of material is known as large-scale structure.

The new VLT results indicate that the rotation axes of the quasars tend to be parallel to the large-scale structures in which they find themselves. So, if the quasars are in a long filament then the spins of the central black holes will point along the filament. The researchers estimate that the probability that these alignments are simply the result of chance is less than 1%.

A correlation between the orientation of quasars and the structure they belong to is an important prediction of numerical models of evolution of our Universe. Our data provide the first observational confirmation of this effect, on scales much larger that what had been observed to date for normal galaxies,” adds Dominique Sluse of the Argelander-Institut für Astronomie in Bonn, Germany and University of Liège.

The team could not see the rotation axes or the jets of the quasars directly. Instead they measured the polarisation of the light from each quasar and, for 19 of them, found a significantly polarised signal. The direction of this polarisation, combined with other information, could be used to deduce the angle of the accretion disc and hence the direction of the spin axis of the quasar.

The alignments in the new data, on scales even bigger than current predictions from simulations, may be a hint that there is a missing ingredient in our current models of the cosmos,” concludes Dominique Sluse.

More information

This research was presented in a paper entitled “Alignment of quasar polarizations with large-scale structures“, by D. Hutsemékers et al., to appear in the journal Astronomy & Astrophysics on 19 November 2014.

The team is composed of D. Hutsemékers (Institut d’Astrophysique et de Géophysique, Université de Liège, Liège, Belgium), L. Braibant (Liège), V. Pelgrims (Liège) and D. Sluse (Argelander-Institut für Astronomie, Bonn, Germany; Liège).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Source: ESO