Tag Archives: red planet

ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior.
Credit:EPFL

Entering 2016 with new hope

Syed Faisal ur Rahman


 

Year 2015 left many good and bad memories for many of us. On one hand we saw more wars, terrorist attacks and political confrontations, and on the other hand we saw humanity raising voices for peace, sheltering refugees and joining hands to confront the climate change.

In science, we saw first ever photograph of light as both wave and particle. We also saw some serious development in machine learning, data sciences and artificial intelligence areas with some voices raising caution about the takeover of AI over humanity and issues related to privacy. The big question of energy and climate change remained a key point of  discussion in scientific and political circles. The biggest break through came near the end of the year with Paris deal during COP21.

The deal involving around 200 countries represent a true spirit of humanity to limit global warming below 2C and commitments for striving to keep temperatures at above 1.5C pre-industrial levels. This truly global commitment also served in bringing rival countries to sit together for a common cause to save humanity from self destruction. I hope the spirit will continue in other areas of common interest as well.

This spectacular view from the NASA/ESA Hubble Space Telescope shows the rich galaxy cluster Abell 1689. The huge concentration of mass bends light coming from more distant objects and can increase their total apparent brightness and make them visible. One such object, A1689-zD1, is located in the box — although it is still so faint that it is barely seen in this picture. New observations with ALMA and ESO’s VLT have revealed that this object is a dusty galaxy seen when the Universe was just 700 million years old. Credit: NASA; ESA; L. Bradley (Johns Hopkins University); R. Bouwens (University of California, Santa Cruz); H. Ford (Johns Hopkins University); and G. Illingworth (University of California, Santa Cruz)
This spectacular view from the NASA/ESA Hubble Space Telescope shows the rich galaxy cluster Abell 1689. The huge concentration of mass bends light coming from more distant objects and can increase their total apparent brightness and make them visible. One such object, A1689-zD1, is located in the box — although it is still so faint that it is barely seen in this picture.
New observations with ALMA and ESO’s VLT have revealed that this object is a dusty galaxy seen when the Universe was just 700 million years old.
Credit:
NASA; ESA; L. Bradley (Johns Hopkins University); R. Bouwens (University of California, Santa Cruz); H. Ford (Johns Hopkins University); and G. Illingworth (University of California, Santa Cruz)

Space Sciences also saw some enormous advancements with New Horizon sending photographs from Pluto, SpaceX successfully landed the reusable Falcon 9 rocket back after a successful launch and we also saw the discovery of the largest regular formation in the Universe,by Prof Lajos Balazs, which is a ring of nine galaxies 7 billion light years away and 5 billion light years wide covering a third of our sky.We also learnt this year that Mars once had more water than Earth’s Arctic Ocean. NASA later confirmed the evidence that water flows on the surface of Mars. The announcement led to some interesting insight into the atmospheric studies and history of the red planet.

In the researchers' new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment. Illustration: Jose-Luis Olivares/MIT
In the researchers’ new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment.
Illustration: Jose-Luis Olivares/MIT

We also saw some encouraging advancements in neurosciences where we saw MIT’s researchers  developing a technique allowing direct stimulation of neurons, which could be an effective treatment for a variety of neurological diseases, without the need for implants or external connections. We also saw researchers reactivating neuro-plasticity in older mice, restoring their brains to a younger state and we also saw some good progress in combating Alzheimer’s diseases.

Quantum physics again stayed as a key area of scientific advancements. Quantu

ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior. Credit:EPFL
ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior.
Credit:EPFL

m computing is getting more closer to become a viable alternative to current architecture. The packing of the single-photon detectors on an optical chip is a crucial step toward quantum-computational circuits. Researchers at the Australian National University (ANU)  performed experiment to prove that reality does not exist until it is measured.

There are many other areas where science and technology reached new heights and will hopefully continue to do so in the year 2016. I hope these advancements will not only help us in growing economically but also help us in becoming better human beings and a better society.

 

 

 

 

 

This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.

Credit:
ESO/M. Kornmesser

Mars, the Red Planet once had more water than Earth’s Arctic Ocean

Researchers, from ESO, NASA and Keck, who are studying Mars’ atmosphere have provided some exciting results regarding the history of water on the red planet.


 

A primitive ocean on Mars held more water than Earth’s Arctic Ocean, and covered a greater portion of the planet’s surface than the Atlantic Ocean does on Earth, according to new results published today. An international team of scientists used ESO’s Very Large Telescope, along with instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility, to monitor the atmosphere of the planet and map out the properties of the water in different parts of Mars’s atmosphere over a six-year period. These new maps are the first of their kind. The results appear online in the journal Science today.

About four billion years ago, the young planet would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.

Our study provides a solid estimate of how much water Mars once had, by determining how much water was lost to space,” said Geronimo Villanueva, a scientist working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, USA, and lead author of the new paper. “With this work, we can better understand the history of water on Mars.

This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres. Credit: ESO/M. Kornmesser
This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.
Credit:
ESO/M. Kornmesser

The new estimate is based on detailed observations of two slightly different forms of water in Mars’s atmosphere. One is the familiar form of water, made with two hydrogen atoms and one oxygen, H2O. The other is HDO, or semi-heavy water, a naturally occurring variation in which one hydrogen atom is replaced by a heavier form, called deuterium.

As the deuterated form is heavier than normal water, it is less easily lost into space through evaporation. So, the greater the water loss from the planet, the greater the ratio of HDO to H2O in the water that remains [1].

The researchers distinguished the chemical signatures of the two types of water using ESO’s Very Large Telescope in Chile, along with instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility in Hawaii [2]. By comparing the ratio of HDO to H2O, scientists can measure by how much the fraction of HDO has increased and thus determine how much water has escaped into space. This in turn allows the amount of water on Mars at earlier times to be estimated.

In the study, the team mapped the distribution of H2O and HDO repeatedly over nearly six Earth years — equal to about three Mars years — producing global snapshots of each, as well as their ratio. The maps reveal seasonal changes and microclimates, even though modern Mars is essentially a desert.

Ulli Kaeufl of ESO, who was responsible for building one of the instruments used in this study and is a co-author of the new paper, adds: “I am again overwhelmed by how much power there is in remote sensing on other planets using astronomical telescopes: we found an ancient ocean more than 100 million kilometres away!” 

The team was especially interested in regions near the north and south poles, because the polar ice caps are the planet’s largest known reservoir of water. The water stored there is thought to document the evolution of Mars’s water from the wet Noachian period, which ended about 3.7 billion years ago, to the present.

The new results show that atmospheric water in the near-polar region was enriched in HDO by a factor of seven relative to Earth’s ocean water, implying that water in Mars’s permanent ice caps is enriched eight-fold. Mars must have lost a volume of water 6.5 times larger than the present polar caps to provide such a high level of enrichment. The volume of Mars’s early ocean must have been at least 20 million cubic kilometres.

Based on the surface of Mars today, a likely location for this water would be the Northern Plains, which have long been considered a good candidate because of their low-lying ground. An ancient ocean there would have covered 19% of the planet’s surface — by comparison, the Atlantic Ocean occupies 17% of the Earth’s surface.

With Mars losing that much water, the planet was very likely wet for a longer period of time than previously thought, suggesting the planet might have been habitable for longer,” said Michael Mumma, a senior scientist at Goddard and the second author on the paper.

It is possible that Mars once had even more water, some of which may have been deposited below the surface. Because the new maps reveal microclimates and changes in the atmospheric water content over time, they may also prove to be useful in the continuing search for underground water.

Notes

[1] In oceans on Earth there are about 3200 molecules of H2O for each HDO molecule.

[2] Although probes on the Martian surface and orbiting the planet can provide much more detailed in situmeasurements, they are not suitable for monitoring the properties of the whole Martian atmosphere. This is best done using infrared spectrographs on large telescopes back on Earth.

Source: ESO


 

ISRO's facebook page inviting their members to witness the history.

ISRO and India all set for MOM’s Mars Insertion|Update: MOM successfully completes Insertion Phase

Indian Space Research Organization (ISRO) is all set to make a history when their Mars Orbital Mission (MOM) or Mangalyan will enter the orbit of Mars.

Mars Orbital Insertion (MOI) is scheduled on 24th of September 2014.

MOM  was launched into the Earth’s orbit on 5th November 2013 from the First Launch Pad at Satish Dhawan Space Centre SHAR, Sriharikota, Andhra Pradesh, using a Polar Satellite Launch Vehicle (PSLV) rocket C25 at 09:08 UTC (14:38 IST) . The mission will not only help in gathering useful information related to the atmosphere of Mars or the Red Planet and planetary astrophysics in general but will also be remembered as a great milestone achieved by Indian scientists and is expected to boost the interest in science and technology education and research in India.

The live webcast for MOI will be available on ISRO’s website. Webcast will be available on Sep 24, 2014 from 06:45 hrs (IST):

http://webcast.isro.gov.in/

We wish best of luck to MOM!

ISRO's facebook page inviting their members to witness the history.
ISRO’s facebook page inviting their members to witness the history.

Update 7:35 am: MOM successfully complete’s Insertion phase.

Narendra Modi, PM of India announced the success by saying,

“Aaj Mangal ka MOM sai milan hogiya.” [Today, Mangal (Mars or Mangalyan) and MOM have met]

 

Congratulations India and ISRO!