Tag Archives: social

Climate change requires new conservation models, Stanford scientists say

In a world transformed by climate change and human activity, Stanford scientists say that conserving biodiversity and protecting species will require an interdisciplinary combination of ecological and social research methods.

By Ker Than

A threatened tree species in Alaska could serve as a model for integrating ecological and social research methods in efforts to safeguard species that are vulnerable to climate change effects and human activity.

In a new Stanford-led study, published online this week in the journal Biological Conservation, scientists assessed the health of yellow cedar, a culturally and commercially valuable tree throughout coastal Alaska that is experiencing climate change-induced dieback.

In an era when climate change touches every part of the globe, the traditional conservation approach of setting aside lands to protect biodiversity is no longer sufficient to protect species, said the study’s first author, Lauren Oakes, a research associate at Stanford University.

“A lot of that kind of conservation planning was intended to preserve historic conditions, which, for example, might be defined by the population of a species 50 years ago or specific ecological characteristics when a park was established,” said Oakes, who is a recent PhD graduate of the Emmett Interdisciplinary Program in Environment and Resources (E-IPER) at Stanford’s School of Earth, Energy, & Environmental Sciences.

But as the effects of climate change become increasingly apparent around the world, resource managers are beginning to recognize that “adaptive management” strategies are needed that account for how climate change affects species now and in the future.

Similarly, because climate change effects will vary across regions, new management interventions must consider not only local laws, policies and regulations, but also local peoples’ knowledge about climate change impacts and their perceptions about new management strategies. For yellow cedar, new strategies could include assisting migration of the species to places where it may be more likely to survive or increasing protection of the tree from direct uses, such as harvesting.

Gathering these perspectives requires an interdisciplinary social-ecological approach, said study leader Eric Lambin, the George and Setsuko Ishiyama Provostial Professor in the School of Earth, Energy, & Environmental Sciences.

“The impact of climate change on ecosystems is not just a biophysical issue. Various actors depend on these ecosystems and on the services they provide for their livelihoods,” said Lambin, who is also  a senior fellow at the Stanford Woods Institute for the Environment.

“Moreover, as the geographic distribution of species is shifting due to climate change, new areas that are currently under human use will need to be managed for biodiversity conservation. Any feasible management solution needs to integrate the ecological and social dimensions of this challenge.”

Gauging yellow cedar health

The scientists used aerial surveys to map the distribution of yellow cedar in Alaska’s Glacier Bay National Park and Preserve (GLBA) and collected data about the trees’ health and environmental conditions from 18 randomly selected plots inside the park and just south of the park on designated wilderness lands.

“Some of the plots were really challenging to access,” Oakes said. “We would get dropped off by boat for 10 to 15 days at a time, travel by kayak on the outer coast, and hike each day through thick forests to reach the sites. We’d wake up at 6 a.m. and it wouldn’t be until 11 a.m. that we reached the sites and actually started the day’s work of measuring trees.”

The field surveys revealed that yellow cedars inside of GLBA were relatively healthy and unstressed compared to trees outside the park, to the south. Results also showed reduced crowns and browned foliage in yellow cedar trees at sites outside the park, indicating early signs of the dieback progressing toward the park.

Additionally, modeling by study co-authors Paul Hennon, David D’Amore, and Dustin Wittwer at the USDA Forest Service suggested the dieback is expected to emerge inside GLBA in the future. As the region warms, reductions in snow cover, which helps insulate the tree’s shallow roots, leave the roots vulnerable to sudden springtime cold events.

Merging disciplines

In addition to collecting data about the trees themselves with a team of research assistants, Oakes conducted interviews with 45 local residents and land managers to understand their perceptions about climate change-induced yellow cedar dieback; whether or not they thought humans should intervene to protect the species in GLBA; and what forms those interventions should take.

One unexpected and interesting pattern that emerged from the interviews is that those participants who perceived protected areas as “separate” from nature commonly expressed strong opposition to intervention inside protected areas, like GLBA. In contrast, those who thought of humans as being “a part of” protected areas viewed intervention more favorably.

“Native Alaskans told me stories of going to yellow cedar trees to walk with their ancestors,” Oakes said. “There were other interview participants who said they’d go to a yellow cedar tree every day just to be in the presence of one.”

These people tended to support new kinds of interventions because they believed humans were inherently part of the system and they derived many intangible values, like spiritual or recreational values, from the trees. In contrast, those who perceived protected areas as “natural” and separate from humans were more likely to oppose new interventions in the protected areas.

Lambin said he was not surprised to see this pattern for individuals because people’s choices are informed by their values. “It was less expected for land managers who occupy an official role,” he added. “We often think about an organization and its missions, but forget that day-to-day decisions are made by people who carry their own value systems and perceptions of risks.”

The insights provided by combining ecological and social techniques could inform decisions about when, where, and how to adapt conservation practices in a changing climate, said study co-author Nicole Ardoin, an assistant professor at Stanford’s Graduate School of Education and a center fellow at the Woods Institute.

“Some initial steps in southeast Alaska might include improving tree monitoring in protected areas and increasing collaboration among the agencies that oversee managed and protected lands, as well as working with local community members to better understand how they value these species,” Ardoin said.

The team members said they believe their interdisciplinary approach is applicable to other climate-sensitive ecosystems and species, ranging from redwood forests in California to wild herbivore species in African savannas, and especially those that are currently surrounded by human activities.

“In a human-dominated planet, such studies will have to become the norm,” Lambin said. “Humans are part of these land systems that are rapidly transforming.”

This study was done in partnership with the U.S. Forest Service Pacific Northwest Research Station. It was funded with support from the George W. Wright Climate Change Fellowship; the Morrison Institute for Population and Resource Studies and the School of Earth, Energy & Environmental Sciences at Stanford University; the Wilderness Society Gloria Barron Fellowship; the National Forest Foundation; and U.S. Forest Service Pacific Northwest Research Station and Forest Health Protection.

For more Stanford experts on climate change and other topics, visit Stanford Experts.

Source : Stanford News


Our connection to content

Using neuroscience tools, Innerscope Research explores the connections between consumers and media.

By Rob Matheson


It’s often said that humans are wired to connect: The neural wiring that helps us read the emotions and actions of other people may be a foundation for human empathy.

But for the past eight years, MIT Media Lab spinout Innerscope Research has been using neuroscience technologies that gauge subconscious emotions by monitoring brain and body activity to show just how powerfully we also connect to media and marketing communications.

“We are wired to connect, but that connection system is not very discriminating. So while we connect with each other in powerful ways, we also connect with characters on screens and in books, and, we found, we also connect with brands, products, and services,” says Innerscope’s chief science officer, Carl Marci, a social neuroscientist and former Media Lab researcher.

With this core philosophy, Innerscope — co-founded at MIT by Marci and Brian Levine MBA ’05 — aims to offer market research that’s more advanced than traditional methods, such as surveys and focus groups, to help content-makers shape authentic relationships with their target consumers.

“There’s so much out there, it’s hard to make something people will notice or connect to,” Levine says. “In a way, we aim to be the good matchmaker between content and people.”

So far, it’s drawn some attention. The company has conducted hundreds of studies and more than 100,000 content evaluations with its host of Fortune 500 clients, which include Campbell’s Soup, Yahoo, and Fox Television, among others.

And Innerscope’s studies are beginning to provide valuable insights into the way consumers connect with media and advertising. Take, for instance, its recent project to measure audience engagement with television ads that aired during the Super Bowl.

Innerscope first used biometric sensors to capture fluctuations in heart rate, skin conductance, breathing, and motion among 80 participants who watched select ads and sorted them into “winning” and “losing” commercials (in terms of emotional responses). Then their collaborators at Temple University’s Center for Neural Decision Making used functional magnetic resonance imaging (fMRI) brain scans to further measure engagement.

Ads that performed well elicited increased neural activity in the amygdala (which drives emotions), superior temporal gyrus (sensory processing), hippocampus (memory formation), and lateral prefrontal cortex (behavioral control).

“But what was really interesting was the high levels of activity in the area known as the precuneus — involved in feelings of self-consciousness — where it is believed that we keep our identity. The really powerful ads generated a heightened sense of personal identification,” Marci says.

Using neuroscience to understand marketing communications and, ultimately, consumers’ purchasing decisions is still at a very early stage, Marci admits — but the Super Bowl study and others like it represent real progress. “We’re right at the cusp of coherent, neuroscience-informed measures of how ad engagement works,” he says.

Capturing “biometric synchrony”

Innerscope’s arsenal consists of 10 tools: Electroencephalography and fMRI technologies measure brain waves and structures. Biometric tools — such as wristbands and attachable sensors — track heart rate, skin conductance, motion, and respiration, which reflect emotional processing. And then there’s eye-tracking, voice-analysis, and facial-coding software, as well as other tests to complement these measures.

Such technologies were used for market research long before the rise of Innerscope. But, starting at MIT, Marci and Levine began developing novel algorithms, informed by neuroscience, that find trends among audiences pointing to exact moments when an audience is engaged together — in other words, in “biometric synchrony.”

Traditional algorithms for such market research would average the responses of entire audiences, Levine explains. “What you get is an overall level of arousal — basically, did they love or hate the content?” he says. “But how is that emotion going to be useful? That’s where the hole was.”

Innerscope’s algorithms tease out real-time detail from individual reactions — comprising anywhere from 500 million to 1 billion data points — to locate instances when groups’ responses (such as surprise, excitement, or disappointment) collectively match.

As an example, Levine references an early test conducted using an episode of the television show “Lost,” where a group of strangers are stranded on a tropical island.

Levine and Marci attached biometric sensors to six separate groups of five participants. At the long-anticipated moment when the show’s “monster” is finally revealed, nearly everyone held their breath for about 10 to 15 seconds.

“What our algorithms are looking for is this group response. The more similar the group response, the more likely the stimuli is creating that response,” Levine explains. “That allows us to understand if people are paying attention and if they’re going on a journey together.”

Getting on the map

Before MIT, Marci was a neuroscientist studying empathy, using biometric sensors and other means to explore how empathy between patient and doctor can improve patient health.

“I was lugging around boxes of equipment, with wires coming out and videotaping patients and doctors. Then someone said, ‘Hey, why don’t you just go to the MIT Media Lab,’” Marci says. “And I realized it had the resources I needed.”

At the Media Lab, Marci met behavioral analytics expert and collaborator Alexander “Sandy” Pentland, the Toshiba Professor of Media Arts and Sciences, who helped him set up Bluetooth sensors around Massachusetts General Hospital to track emotions and empathy between doctors and patients with depression.

During this time, Levine, a former Web developer, had enrolled at MIT, splitting his time between the MIT Sloan School of Management and the Media Lab. “I wanted to merge an idea to understand customers better with being able to prototype anything,” he says.

After meeting Marci through a digital anthropology class, Levine proposed that they use this emotion-tracking technology to measure the connections of audiences to media. Using prototype sensor vests equipped with heart-rate monitors, stretch receptors, accelerometers, and skin-conductivity sensors, they trialed the technology with students around the Media Lab.

All the while, Levine pieced together Innerscope’s business plan in his classes at MIT Sloan, with help from other students and professors. “The business-strategy classes were phenomenal for that,” Levine says. “Right after finishing MIT, I had a complete and detailed business plan in my hands.”

Innerscope launched in 2006. But a 2008 study really accelerated the company’s growth. “NBC Universal had a big concern at the time: DVR,” Marci says. “Were people who were watching the prerecorded program still remembering the ads, even though they were clearly skipping them?”

Innerscope compared facial cues and biometrics from people who fast-forwarded ads against those who didn’t. The results were unexpected: While fast-forwarding, people stared at the screen blankly, but their eyes actually caught relevant brands, characters, and text. Because they didn’t want to miss their show, while fast-forwarding, they also had a heightened sense of engagement, signaled by leaning forward and staring fixedly.

“What we concluded was that people don’t skip ads,” Marci says. “They’re processing them in a different way, but they’re still processing those ads. That was one of those insights you couldn’t get from a survey. That put us on the map.”

Today, Innerscope is looking to expand. One project is bringing kiosks to malls and movie theaters, where the company recruits passersby for fast and cost-effective results. (Wristbands monitor emotional response, while cameras capture facial cues and eye motion.) The company is also aiming to try applications in mobile devices, wearables, and at-home sensors.

“We’re rewiring a generation of Americans in novel ways and moving toward a world of ubiquitous sensing,” Marci says. “We’ll need data science and algorithms and experts that can make sense of all that data.”

 

Source : MIT News Office

 

Simple isn’t better when talking about science, Stanford philosopher suggests

Taking a philosophical approach to the assumptions that surround the study of human behavior, Stanford philosophy Professor Helen Longino suggests that no single research method is capable of answering the question of nature vs. nurture.


 

By Barbara Wilcox

Studies of the origins of human sexuality and aggression are typically in the domain of the sciences, where researchers examine genetic, neurobiological, social and environmental factors.

Behavioral research findings draw intense interest from other researchers, policymakers and the general public. But Stanford’s Helen E. Longino, the Clarence Irving Lewis Professor of Philosophy, says there’s more to the story.

Longino, who specializes in the philosophy of science, asserts in her latest book that the limitations of behavioral research are not clearly communicated in academic or popular discourse. As a result, this lack of communication distorts the scope of current behavioral research.

In her book Studying Human Behavior: How Scientists Investigate Aggression and Sexuality, Longino examines five common scientific approaches to the study of behavior – quantitative behavioral genetics, molecular behavioral genetics, developmental psychology, neurophysiology and anatomy, and social/environmental methods.

Applying the analytical tools of philosophy, Longino defines what is – and is not – measured by each of these approaches. She also reflects on how this research is depicted in academic and popular media.

In her analysis of citations of behavioral research, Longino found that the demands of journalism and of the culture at large favor science with a very simple storyline. Research that looks for a single “warrior gene” or a “gay gene,” for example, receives more attention in both popular and scholarly media than research that takes an integrative approach across scientific approaches or disciplines.

Longino spoke with the Stanford News Service about why it is important for scientists and the public to understand the parameters of behavioral research:

 

Your research suggests that social-science researchers are not adequately considering the limitations of their processes and findings. To what do you attribute this phenomenon?

The sciences have become hyper-specialized. Scientists rarely have the opportunity or support to step back from their research and ask how it connects with other work on similar topics. I see one role of philosophers of science as the provision of that larger, interpretive picture. This is not to say that there is one correct interpretation, rather that as philosophers we can show that the interpretive questions are askable.

 

Why study behavioral research through a philosophic lens?

Philosophy deals, in part, with the study of how things are known. A philosopher can ask, “What are the grounds for believing any of the claims here? What are the relationships between these approaches? The differences? What can we learn? What can this way of thinking not tell us?”

These are the questions I asked of each article I read. I developed a grid system for analyzing and recording the way the behavior under study was defined and measured, the correlational or observational data – including size and character of sample population – developed, the hypotheses evaluated.

 

What about your findings do you think would surprise people most?

I went into the project thinking that what would differentiate each approach was its definition of behavior. As the patterns emerged, I saw that. What differentiated each approach was how it characterized the range of possible causal factors.

Because each approach characterized this range differently, the measurements of different research approaches were not congruent. Thus, their results could not be combined or integrated or treated as empirical competitors. But this is what is required if the nature vs. nurture – or nature and nurture – question is to be meaningful.

I also investigated the representation of this research in public media. I found that research that locates the roots of behavior in the individual is cited far more often than population-based studies, and that research that cites genetic or neurobiological factors is cited more frequently than research into social or environmental influences on behavior. Interestingly, science journalists fairly consistently described biological studies as being more fruitful and promising than studies into social factors of behavior.

Social research was always treated as “terminally inconclusive,” using terms that amount to “we’ll never get an answer.” Biological research was always treated as being a step “on the road to knowledge.”

 

What prompted you to begin the research that became Studying Human Behavior?

In 1992, an East Coast conference on “genetic factors and crime” was derailed under pressure from activists and the Congressional Black Caucus, which feared that the findings being presented might be misused to find a racial basis for crime or links between race and intelligence. I became interested in the conceptual and theoretical foundations of the conference – the voiced and unvoiced assumptions made by both the conference participants and by the activists, policymakers and other users of the research.

 

Why did you pair human aggression and sexuality as a subject for a book?

While I started with the research on aggression, research on sexual orientation started popping up in the news and I wanted to include research on at least two behaviors or families of behavior in order to avoid being misled by potential sample bias. Of course, these behaviors are central to social life, so how we try to understand them is intrinsically interesting.

 

What could science writers be doing better?

Articles in the popular media, such as the science sections of newspapers, rarely discuss the methodology of studies that they cover as news. Yet methodology and the disciplinary approach of the scientists doing the research are critical because they frame the question.

For example, quantitative behavioral genetics research will consider a putatively shared genome against social factors such as birth order, parental environment and socioeconomic status. Molecular genetics research seeks to associate specific traits with specific alleles or combinations within the genome, but the social factors examined by quantitative behavioral genetics lie outside its purview. Neurobiological research might occupy a middle ground. But no single approach or even a combination of approaches can measure all the factors that bear on a behavior.

It’s also important to know that often, behavior is not what’s being studied. It’s a tool, not the subject. The process of serotonin re-uptake, for example, may be of primary interest to the researcher, not the behavior that it yields. Yet behavior is what’s being reported.

 

What advice do you have for people who might be concerned about potential political ramifications of research into sexuality or aggression?

I see political ramifications in what is not studied.

In studying sexual orientation, the 7-point Kinsey scale was an improvement over a previous binary measure of orientation. Researchers employing the Kinsey scale still tend to find greater concentrations at the extremes. Middle points still get dropped out of the analysis. In addition to more attention to intermediates on the scale, there could be focus on other dimensions of erotic orientation in addition to, or instead of, the sex of the individual to which one is attracted.

Similarly, there are a number of standard ways to measure aggressive response, but they are all focused on the individual. Collective action is not incorporated. If the interest in studying aggression is to shed light on crime, there’s a whole lot of behavior that falls outside that intersection, including white-collar crime and state- or military-sponsored crime.

 

What other fields of inquiry could benefit from your findings?

Climate study is as complex as behavioral study. We’d have a much better debate about climate change if we were not looking for a single answer or silver bullet. The public should understand the complexities that the IPCC [Intergovernmental Panel on Climate Change] must cope with in producing its findings.

Source: Stanford News Service