Tag Archives: turkey

Academic and research collaboration to improve people to people contacts for peace and progress

Syed Faisal ur Rahman

Muslim world especially Middle East and surrounding regions, where we live, are facing some of the worst political turmoil of our history. We are seeing wars, terrorism, refugee crisis and resulting economic. The toughest calamities are faced by common people who have very little or no control over the policies which are resulting in the current mess. Worst thing which is happening is the exploitation of sectarianism as a tool to forward foreign policy and strategic agenda. Muslims in many parts of the world are criticizing western powers for this situation but we also need to seriously do some soul searching.

We need to see why are we in this mess?

For me one major reason is that OIC members have failed to find enough common constructive goals to bring their people together.

After the Second World War, Europe realized the importance of academic and economic cooperation for promoting peace and stability. CERN is a prime example of how formal foes can join hands for the purpose of discovery and innovation.

France and Germany have established common institutes and their universities regularly conduct joint research projects. UK and USA, despite enormous bloodshed the historical American war of independence, enjoy exemplary people to people relationships and academic collaboration is a major part of it. It is this attitude of thinking big, finding common constructive goals and strong academic collaboration, which has put them in the forefront of science and technology.

Over the last few decades, humanity has sent probes like Voyager which are challenging the limits of our solar system, countries are thinking about colonizing Mars, satellites like PLANCK and WMAP are tracking radiation from the early stages of our universe, quantum computing is now looking like a possibility and projects are being made for hyper-sonic flights. But in most of the so called Muslim world, we are stuck with centuries old and good for nothing sectarian issues.

Despite some efforts in the defense sector, OIC member countries largely lack the technology base to independently produce jets, automobiles, advanced electronics, precision instruments and many other things which are being produced by public or independent private sector companies in USA, China, Russia, Japan and Europe. Most of the things which are being indigenously produced by OIC countries rely heavily on foreign core components like engine or high precision electronics items. This is due to our lack of investment on fundamental research especially Physics.

OIC countries like Turkey, Pakistan, Malaysia, Iran, Saudi Arabia and some others have some basic infrastructure on which they can build upon to conduct research projects and joint ventures in areas like sending space probes, ground based optical and radio astronomy, particle physics, climate change and development of strong industrial technology base.  All we need is the will to start joint projects and promote knowledge sharing via exchange of researchers or joint academic and industrial research projects.

These joint projects will not only be helpful in enhancing people to people contacts and improving academic research standards but they will also contribute positively in the overall progress of humanity. It is a great loss for humanity as a whole that a civilization, which once led the efforts to develop astronomy, medicine and other key areas of science, is not making any or making very little contribution in advancing our understanding of the universe.

The situation is bad and if we look at Syria, Afghanistan, Iraq, Yemen or Libya then it seems we have hit the rock bottom. It is “Us” who need to find the way out of this mess as no one is going to solve our problems especially the current sectarian mess which is a result of narrow mindsets taking weak decisions. To come out of this dire state, we need broad minds with big vision and a desire of moving forward through mutual respect and understanding.

 

ginipkcnin

Science, Economy and Peace: A study focusing Pakistan

Syed Faisal ur Rahman


 

 Abstract: A key difference between the first world and the third world is their progress in the fields of science and technology. Pakistan is mainly known as an agricultural economy but agriculture sector does not contribute much in shaping the modern global economy. We will analyze how science and technology helped in improving the lives of people but also will see its role in the economic development of countries. In the age of conflicts, war and economic rivalry, it is often hard to find common grounds for humanity to proceed for common goals. Fortunately, some big science projects have proved to be a beacon of hope for humanity in pursuing a better peaceful and prosperous future for this world.We will give an overview of some of the projects pursued by countries who are normally rivals at military and economic fronts, but for pursuing science goals they have to join hands, giving a better hope for peace and economic development. We will also see how Pakistan can learn from the experiences of other countries and regions to build a better future for it’s people.

 


 

Introduction

Last century saw enormous developments in the field of science and technology, which also helped countries to rapidly develop their potential in industry, medical sciences, defense, space and many other sectors. Countries which made science and technology research and education as priority areas emerged as stronger nations as compared to those who merely relied on agriculture and the abundance of natural resources.

We can also see that big science projects, involving one or more than one country, have served our society through spin-off technologies, human resource development, boosting up economic activity and cooperation. Also, we will study the role of some big science projects in promoting peace and stability in the world.

Global Economy and Pakistan

According to Central Intelligence Agency (CIA) world factbook public data [14], global economy has a size of 71.3 trillion dollars if we look at Gross Domestic Product (GDP) based on official exchange rate and 83.12 trillion dollars based on GDP purchasing power parity (PPP).

The contribution of different sectors based on CIA world fact book 2012 estimates, is as:

Agriculture- 5.9%

Industry -30.2%

Services- 63.9%

Pakistan which comprises of ~2.5-2.7 (2011 World Bank Data) percent of world population, only has 230.5 billion dollars GDP (official exchange rate) and 514.6 billion dollars GDP (PPP) which makes it around 0.32 % of the world economy based on GDP (official exchange rate) and 0.62% based on GDP(PPP). This shows a serious gap in income scales of some of the developed countries of the world and a relatively poor economy like Pakistan. This high population and low GDP mean less money available to individuals living in the country. GDP per capita (PPP) of the world is 12,400 dollars based on CIA world factbook 2012 estimates and for Pakistan the figure is 2,900 dollars.

Pakistan is also relatively more dependent on the agricultural sector. Pakistan’s labor composition is estimated in 2012 CIA world fact book as:

Agriculture- 20.1%

Industry- 25.5%

Services- 54.4%

If we look at the labor distribution, then according to 2007 estimates, Pakistan’s ~45% population is involved in the agricultural sector, which is more than industry (~21%) and services (~34%).

 Science, Technology and Global Economy

Below is plot of World Bank 2011 data [13] for countries with highest Gross National Income (GNI) per capita:

gnipercapita

Fig. 1: GNI per capita for 2011 based on World Bank Data

If we look at figure 1 then we can clearly see that most countries in top 20 GNI are knowledge based economies and some represent natural resource or energy based economies. In comparison with these economies, Pakistan’s GNI is 1,120 dollars based on the same criteria.

A more direct comparison can be given between GDP and science output is the table below showing top scientific and technical journal producers and their GDP rankings:

Rank(based on column 3) Country Scientific and Technical Journal Articles (2009, World Bank Data)[13] GDP Ranking ( based on 2011, World Bank Data) Human Development Index(HDI, based on 2012 UNDP Data) [11] Category
1 United States 208,601 1 Very High
2 China 74,019 2 Medium
3 Japan 49,627 3 Very High
4 United Kingdom 45,649 7 Very High
5 Germany 45,003 4 Very High
6 France 31,748 5 Very High
7 Canada 29,017 10 Very High
8 Italy 26,755 7 Very High
9 South Korea 22,271 14 Very High
10 Spain 21,543 11 Very High
11 India 19,917 8 Medium
12 Australia 18,923 12 Very High
13 Netherlands 14,866 16 Very High
14 Russia 14,016 9 High
15 Brazil 12,306 6 High
16 Sweden 9,478 20 Very High
17 Switzerland 9,469 18 Very High
18 Turkey 8,301 17 High
19 Poland 7,355 21 Very High
20 Belgium 7,218 22 Very High
46 Pakistan 1,043 45 Low

Table 1: Pakistan and the top 20 Sci-tech journal articles producing countries and their GDP rankings (based on the World Bank data). Also we have presented the Human Development Index (HDI) categories of these countries based on the 2012 United Nations Development Program’s HDI data.

Figures in table 1, clearly shows some relation between scientific output and the size of the overall economy. There are few exceptions like Saudi Arabia, which makes regularly into the top 20 economies and is not one of the top producers of scientific and technical journal articles. We can find such inconsistencies as there is more than one factor which contributes to the size of the economy like exploitation of energy resources, minerals, large size of populations and various other factors.

Also we can see that most sci-tech journal articles producing countries are in very high HDI countries with 3 in high and 2 in medium categories. We can see two medium category countries are two of the largest populations on earth i.e. China and India. HDI of a country depends on the access to health, income, access to education and living standard of the citizens of that country. This indicator provides a more realistic picture as compared to GDP for measuring quality of life as countries with large populations like China and India can have high GDP despite lower average income or can have a higher number of sci-tech publications or output despite not doing well in per person averages. In comparison to these countries, Pakistan is in the low HDI category which shows the low quality of life for the citizens of Pakistan.

Pakistan and comparison with India and China

We further narrow our comparison with countries having similar regional and economic history. For this we select India and China. India and China reside in the same region as Pakistan and got independence in the same time period of the late 40s. China has the largest population in the world and India has the second largest population having relatively high population density.

If we look at the historical comparisons after the separation of the East Pakistan from the federation, we can see we were well ahead of both China and India, in terms of GNI per capita and the economic freedom, for a good part of our history. Apart, from being relatively free market economy, Pakistan also did well in the development of techno-industry. Almost all major scientific organizations related to heavy industries, space, nuclear, agricultural and other areas developed in earlier decades of Pakistan. In later years, Pakistan was left behind in development by the two countries. One of the main reasons behind this is Pakistan’s lack of interest in the science and technology sectors and the inability to keep up with the pace of science and technology development in India and China. We can see historical GNI comparisons between Pakistan, China and India.

China adopted a focused techno-industrial development approach. According to Campbell, 2013 [3] paper, China developed its industrial base on Soviet lines till 1959 focusing on heavy industries. After that, till 1976 ideological domination of economic projects and economy didn’t progress much.  Then China adopted a more independent technology research policy with a relatively liberal economic agenda and in 2001 with further Chinese shift towards a market economy from a controlled economy, these policies started to give results as the involvement of private sector in such projects ensured the translation of technology research into commercial success.

Similarly, India focused strongly on science and technology from its early days and also started to initially focus on heavy industries on Soviet lines. Later, especially in early 1990s, with the liberalization of the economy and the policy shift towards more market economy, India started to promote small technology based industries. A good focus of India was on software industry which not only helped India in bringing more export revenues, but also helped improve corporate governance in India (Arora et al, 2002)[1]. This led to more productivity in many industries of India and with gradual shifts towards a market economy India also saw rapid economic growth.

Fig. 2: GNI comparison between Pakistan, China and India (World Bank 2013 Data)

Collaboration in Science and World Peace

Apart from economic development, science projects have also contributed in promoting peace and collaboration among many countries including many rival countries. The lead in promoting scientific collaboration for peace was taken by Europe. After the World War II, Europe learned to promote economic cooperation instead of unnecessary rivalry. This cooperation in economic areas grew further and expanded in other areas like science and technology. Launch of The European Organization for Nuclear Research, or CERN[4] in 1954 was a huge step in promoting scientific collaboration among European countries in post-World War II scenario. This spirit continued even in Cold War days (Gillies, 2011) [6] as the idea of exploring the nature of matter and energy proved to be bigger than the prejudices and blind nationalism.

This spirit continued further in other big sciences and we now see countries like USA, China, Russia, UK and others doing collaborations in space sciences, particle physics, astronomy, medicine and many other areas. Some of the examples in this regard are Square Kilometer Array (SKA), Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME), Search for Extra-terrestrial Intelligence (SETI), International Space Station (ISS) and other projects are forwarding such spirit.

Apart from this many countries are involved in other collaborative projects as well. These projects are always welcomed in civil society and the scientific community as a way to promote peace.

Pakistan is also involved in some of these projects like CERN and SESAME. Pakistan’s collaboration with CERN formally started in past two decades. Pakistan’s connection with CERN is even older than Pakistan’s formal entry in this collaboration. This connection was established through Pakistan’s Nobel Laureate, Dr. Abdus Salam. Still a lot is needed to be done by Pakistan to get the best out of these collaborations with CERN.

In SESAME, Pakistan played a key role by becoming a founding member. The idea is a brain child of Dr. Abdus Salam and Middle East based MESC (Middle East Scientific Cooperation) group headed by Sergio Fubini, a theoretician at CERN, who aspired for a synchrotron radiation source in the Middle East (Historical highlights, SESAME website) [10]. SESAME shares the same spirit of science for peace with CERN as it is helping to bridge the gap between historically rival nations and in improving people to people relations between countries like Pakistan, Iran, Israel, Palestinian Authority, Egypt, Turkey and others who are often involved in heated conflicts in the region. The project was shown full support by 45 Nobel Laureates in a joint declaration which also demanded friends of science and peace to support the project (Declaration, PETRA VI meeting, June 2008) [5].

Pakistan is still behind many countries of the world in space sciences despite being among the first few countries to launch a space rocket in the 1960s. Similarly, Pakistan has not played a significant role in any significant collaboration related to the promotion of astronomy. Our neighboring countries are playing key roles in projects like SKA (skatelescope.org, participating countries) [8] and are also expected to join ISS in the future (Spacenews, 2010) [9].

Big Science and Economic Development

Big science projects have not only played a crucial role in bringing peace or satisfying human curiosity to know more about the nature and origin of matter, energy and the universe, but the path to achieve such scale of science has led to many spin-off technology developments.

Development of World Wide Web (WWW) is a result of data sharing architecture designed for CERN (webfoundation.org, history of the web) [7], Wi-Fi is a result of CSIRO’s efforts to develop better techniques for radio astronomy (csiro.au, outcomes)[12], research in radio astronomy has also played a key role in developing techniques for locating cellular telephones, location for faulty transmitters (Bout, 1999)[2] and various other technologies.

The key here is to understand the importance of basic and fundamental sciences, and understanding the importance of adopting the right strategy for using the resulting science and technologies for economic and social development.

 Pakistan and Suggestions to Develop Science and Technology for Economic Development

The purpose of presenting various examples, data and figures is to show the necessity of developing a solid foundation for science and technology in Pakistan. We are a country with significant potential in minerals, energy and agricultural resources. Also, we have developed some advanced technology base in the defense sector. We also have a small but energetic Information Technology industry, which is growing well despite difficulties due to law and order situation, and electricity crisis in the country.

Below are some of the steps we can take to promote science and technology in Pakistan and then use it for developing Pakistan’s economy.

a) We need to improve basic science education in the country. The school level curriculum is way behind as compared to other parts of the world. We need to produce students who can think big and even if they do not pursue science as their career, they should be at least educated enough to appreciate the importance of fundamental research. Even if students end up pursuing management studies or end up as key decision makers in government or private sector offices then they will be better equipped to realize the importance of science and technology research in the progress of our country or to come up with business idea which will exploit scientific knowledge.

b) We need to promote research and development in the universities by encouraging industry-academia linkages by providing tax incentives for industries involved in promoting research and development in the universities of Pakistan.

c) We need to share the technology base developed in defense sector with the private sector so that it can be used for peaceful commercialization of technology.

d) We need to give tax and reward incentives to the private sector for contributing in fundamental sciences.

e) We need to promote collaboration between universities and strategic national organizations like SUPARCO and NESCOM.

f) The most important thing which is needed to be done is to give the leading role in policy making to the civilian scientists with sound academic and research background. Currently, institutions like SUPARCO, NESCOM and other institutions are under the direct or indirect control of military personnel who usually do not have enough academic and research background to make the right decisions and set the right priorities in the key areas of science and technology.

g) Another thing lacking in Pakistan is active inter-university and intra-university collaboration for science projects related to interdisciplinary sciences.

h) We also need to give priority to the science and technology collaboration in academic and fundamental research areas when planning our foreign policy. Currently, our foreign policy is security focused with no serious efforts to strengthen academic ties with other countries. Our embassies are needed to be run by people who understand how important it is to interact with the academia of the country they are serving in and how important it is to help our universities in making right relationships in foreign countries for scientific research. This will again be dependent on how good we will do in producing non-science graduates who understand the importance of science and technologies as most foreign office employees come from the arts departments, the business schools etc.

i) We finally need to start playing an active role in major areas of science and technology like particle   physics, astronomy, high performance computing, quantum computing, nano-technology and other areas where we have a potential to go ahead but lacking any serious progress due to lack of proper policy making and interest.

We also need to identify our strengths and weaknesses in various areas of technology and divide our science and technology base in:

a)      Commercial

In this category we can place technologies like information & communication, agricultural, pharmaceutical etc.

b)      Defense

Pakistan has done a significant investment over the past few decades in the development of nuclear, missile, fighter jets and other technologies. We can use these technologies for commercial purposes like producing energy or developing civil aeronautical industry.

c)       Strategic

Not all science and technology research produces immediate results but, their long term impact can be seen in other developed countries and some of them are mentioned above. In this category we can place big sciences like space, radio astronomy and high energy physics or even areas like quantum computing, geophysics etc.

d)      Fundamental or Basic

Fundamental or basic sciences help in creating the grounds for developments in other area mentioned previously. Physics is considered as the most fundamental science and in relative broader terms special sciences like chemistry and biology are also often made part of this category. In more liberal definitions, people also include mathematics, statistics and economics in this area as well. We need to improve research in this area and also we need to improve the teaching quality of these subjects in primary, secondary, higher secondary and tertiary level education systems.

This categorization will help Pakistan in better prioritizing the areas based on need and capacity.

Conclusions

We discussed the importance of science and technology in the economic development. We also presented a comparison between Pakistan and other countries, including neighboring China and India. We also discussed the role of science and technology in promoting peace and collaboration. We also discussed how big sciences can contribute to the economy through spin-off technologies. In the end, we also discussed some  suggestions for developing science and technology in Pakistan.

References

  1. Arora A. and Athreye A.,2002. The Software Industry and India’s Economic Development. Information Economics and Policy 14 (2002) 253-273.
  2. Bout P. V., April, 1999. Recent Examples of Technology Fostered by Radio Astronomy (Document).
  3.  Campbell J.R.,2013. Becoming a Techno-Industrial Power: Chinese Science and Technology Policy. Issues in Technology Innovation 23 (2013).
  4. CERN official website – http://home.web.cern.ch/
  5. Ely Wiesel Foundation Declaration, June, 2008. Declaration accepted by the Plenary Meeting of the Nobel Laureates at the PETRA IV Meeting on 19 June 2008 and released by Ely Wiesel Foundation.
  6. Gillies J., 2011, CERN can be model for global co-operation, http://www.publicserviceeurope.com/article/477/cern-can-be-model-for-global-co-operation
  7. History of web-Web foundation website http://www.webfoundation.org/vision/history-of-the-web/
  8. Participating Countries, SKA website- http://www.skatelescope.org/the-project/history-of-the-organisation/participating-countries-2/
  9. Seilding P.B. , Feb. 3, 2010, http://www.spacenews.com
  10. SESAME official website- www.sesame.org.jo
  11. United Nations Development Program (UNDP) HDI http://hdr.undp.org/en/statistics/hdi/
  12. Wireless LANs, CSIRO website- http://www.csiro.au/en/Outcomes/ICT-and-Services/People-and-businesses/wireless-LANs.aspx
  13. World Bank’s World Development Indicators (WDI) – http://data.worldbank.org/indicator
  14. World Fact Book, CIA-https://www.cia.gov/library/publications/the-world-factbook/‎

 

Seismic gap may be filled by an earthquake near Istanbul

After tracking seismic shifts, researchers say a major quake may occur off the coast of Istanbul.

Jennifer Chu 

When a segment of a major fault line goes quiet, it can mean one of two things: The “seismic gap” may simply be inactive — the result of two tectonic plates placidly gliding past each other — or the segment may be a source of potential earthquakes, quietly building tension over decades until an inevitable seismic release.

This map of Turkey shows the artists' interpretation of the North Anatolian Fault (blue line) and the possible site of an earthquake (white lines) that could strike beneath the Sea of Marmara. Image: NASA, and Christine Daniloff and Jose-Luis Olivares/MIT
This map of Turkey shows the artists’ interpretation of the North Anatolian Fault (blue line) and the possible site of an earthquake (white lines) that could strike beneath the Sea of Marmara.
Image: NASA, and Christine Daniloff and Jose-Luis Olivares/MIT

Researchers from MIT and Turkey have found evidence for both types of behavior on different segments of the North Anatolian Fault — one of the most energetic earthquake zones in the world. The fault, similar in scale to California’s San Andreas Fault, stretches for about 745 miles across northern Turkey and into the Aegean Sea.

The researchers analyzed 20 years of GPS data along the fault, and determined that the next large earthquake to strike the region will likely occur along a seismic gap beneath the Sea of Marmara, some five miles west of Istanbul. In contrast, the western segment of the seismic gap appears to be moving without producing large earthquakes.

“Istanbul is a large city, and many of the buildings are very old and not built to the highest modern standards compared to, say, southern California,” says Michael Floyd, a research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “From an earthquake scientist’s perspective, this is a hotspot for potential seismic hazards.”

Although it’s impossible to pinpoint when such a quake might occur, Floyd says this one could be powerful — on the order of a magnitude 7 temblor, or stronger.

“When people talk about when the next quake will be, what they’re really asking is, ‘When will it be, to within a few hours, so that I can evacuate?’ But earthquakes can’t be predicted that way,” Floyd says. “Ultimately, for people’s safety, we encourage them to be prepared. To be prepared, they need to know what to prepare for — that’s where our work can contribute”

Floyd and his colleagues, including Semih Ergintav of the Kandilli Observatory and Earthquake Research Institute in Istanbul and MIT research scientist Robert Reilinger, have published their seismic analysis in the journal Geophysical Research Letters.

In recent decades, major earthquakes have occurred along the North Anatolian Fault in a roughly domino-like fashion, breaking sequentially from east to west. The most recent quake occurred in 1999 in the city of Izmit, just east of Istanbul. The initial shock, which lasted less than a minute, killed thousands. As Istanbul sits at the fault’s western end, many scientists have thought the city will be near the epicenter of the next major quake.

To get an idea of exactly where the fault may fracture next, the MIT and Turkish researchers used GPS data to measure the region’s ground movement over the last 20 years. The group took data along the fault from about 100 GPS locations, including stations where data are collected continuously and sites where instruments are episodically set up over small markers on the ground, the positions of which can be recorded over time as the Earth slowly shifts.

“By continuously tracking, we can tell which parts of the Earth’s crust are moving relative to other parts, and we can see that this fault has relative motion across it at about the rate at which your fingernail grows,” Floyd says.

From their ground data, the researchers estimate that, for the most part, the North Anatolian Fault must move at about 25 millimeters — or one inch — per year, sliding quietly or slipping in a series of earthquakes.

As there’s currently no way to track the Earth’s movement offshore, the group also used fault models to estimate the motion off the Turkish coast. The team identified a segment of the fault under the Sea of Marmara, west of Istanbul, that is essentially stuck, with the “missing” slip accumulating at 10 to 15 millimeters per year. This section — called the Princes’ Island segment, for a nearby tourist destination — last experienced an earthquake 250 years ago.

Floyd and colleagues calculate that the Princes’ Island segment should have slipped about 8 to 11 feet — but it hasn’t. Instead, strain has likely been building along the segment for the last 250 years. If this tension were to break the fault in one cataclysmic earthquake, the Earth could shift by as much as 11 feet within seconds.

That gives very little warning for nearby Istanbul, says Marco Bohnhoff, a professor at the German Research Center for Geosciences in Potsdam, Germany.

“The nucleation point is pretty close to the city center, which makes early warning time pretty short — between two to six seconds,” says Bohnhoff, who has studied seismic patterns in the region. “Since the international airport is located in an area where ground motion would be high, it would be difficult to get in emergency troops, and unfortunately 90 percent of buildings in Istanbul do not fulfill building codes, and might not resist the expected earthquake.”

Although such accumulated strain may be released in a series of smaller, less hazardous rumbles, Floyd says that given the historical pattern of major quakes along the North Anatolian Fault, it would be reasonable to expect a large earthquake off the coast of Istanbul within the next few decades.

“Earthquakes are not regular or predictable,” Floyd says. “They’re far more random over the long run, and you can go many lifetimes without experiencing one. But it only takes one to affect many lives. In a location like Istanbul that is known to be subject to large earthquakes, it comes back to the message: Always be prepared.”

Source: MIT News Office