Tag Archives: universe

Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel

NASA’s Chandra Weighs Most Massive Galaxy Cluster in Distant Universe

Using NASA’s Chandra X-ray Observatory, astronomers have made the first determination of the mass and other properties of a very young, distant galaxy cluster.

The Chandra study shows that the galaxy cluster, seen at the comparatively young age of about 800 million years, is the most massive known cluster with that age or younger. As the largest gravitationally- bound structures known, galaxy clusters can act as crucial gauges for how the Universe itself has evolved over time.

The galaxy cluster was originally discovered using ESA’s XMM-Newton observatory and is located about 9.6 billion light years from Earth. Astronomers used X-ray data from Chandra that, when combined with scientific models, provides an accurate weight of the cluster, which comes in at a whopping 400 trillion times the mass of the Sun. Scientists believe the cluster formed about 3.3 billion years after the Big Bang.

Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel
Credit: X-ray: NASA/CXC/INAF/P.Tozzi, et al; Optical: NAOJ/Subaru and ESO/VLT; Infrared: ESA/Herschel

The cluster is officially named XDCP J0044.0-2033, but the researchers have nicknamed it “Gioiello”, which is Italian for “jewel”. They chose this name because an image of the cluster contains many sparkling colors from the hot, X-ray emitting gas and various star-forming galaxies within the cluster. Also, the research team met to discuss the Chandra data for the first time at Villa il Gioiello, a 15th century villa near the Observatory of Arcetri, which was the last residence of prominent Italian astronomer Galileo Galilei.

“Finding this enormous galaxy cluster at this early epoch means that there could be more out there,” said Paolo Tozzi of the National Institute for Astrophysics (INAF) in Florence, Italy, who led the new study. “This kind of information could have an impact on our understanding of how the large scale structure of the Universe formed and evolved.”

Previously, astronomers had found an enormous galaxy cluster, known as “El Gordo,” at a distance of 7 billion light years away and a few other large, distant clusters. According to the best current model for how the Universe evolved, there is a low chance of finding clusters as massive as the Gioiello Cluster and El Gordo. The new findings suggest that there might be problems with the theory, and are enticing astronomers to look for other distant and massive clusters.

“The hint that there might be problems with the standard model of cosmology is interesting,” said co-author James Jee of the University of California in Davis, “but we need bigger and deeper samples of clusters before we can tell if there’s a real problem.”

The Chandra observation of the Gioiello Cluster lasted over 4 days and is the deepest X-ray observation yet made on a cluster beyond a distance of about 8 billion light years.

“Unlike the galaxy clusters that are close to us, this cluster still has lots of stars forming within its galaxies,” said co-author Joana Santos, also from INAF in Florence. “This gives us a unique window into what galaxy clusters are like when they are very young.”

 

In the past, astronomers have reported finding several galaxy cluster candidates that are located more than 9.5 billion light years away. However, some of these objects turned out to be protoclusters, that is, precursors to fully developed galaxy clusters.

The researchers also note that there are hints of uneven structure in the hot gas. These may be large clumps that could have been caused by collisions and mergers with smaller clusters of galaxies and provides clues to how the cluster became so hefty at its early age. The authors expect that the cluster is still young enough to be undergoing many such interactions.

A paper describing these results will appear in an upcoming issue of The Astrophysical Journal and is available online. NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra’s science and flight operations.

An interactive image, a podcast, and a video about these findings are available at:
http://chandra.si.edu

For Chandra images, multimedia and related materials, visit:
http://www.nasa.gov/chandra

 

Source: Chandra X-Ray Observatory

This spectacular image of the star cluster Messier 47 was taken using the Wide Field Imager camera, installed on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile. This young open cluster is dominated by a sprinkling of brilliant blue stars but also contains a few contrasting red giant stars.

Credit:
ESO

The Hot Blue Stars of Messier 47

This spectacular image of the star cluster Messier 47 was taken using the Wide Field Imager camera, installed on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile. This young open cluster is dominated by a sprinkling of brilliant blue stars but also contains a few contrasting red giant stars.

Messier 47 is located approximately 1600 light-years from Earth, in the constellation of Puppis (the poop deck of the mythological ship Argo). It was first noticed some time before 1654 by Italian astronomer Giovanni Battista Hodierna and was later independently discovered by Charles Messier himself, who apparently had no knowledge of Hodierna’s earlier observation.

Although it is bright and easy to see, Messier 47 is one of the least densely populated open clusters. Only around 50 stars are visible in a region about 12 light-years across, compared to other similar objects which can contain thousands of stars.

Messier 47 has not always been so easy to identify. In fact, for years it was considered missing, as Messier had recorded the coordinates incorrectly. The cluster was later rediscovered and given another catalogue designation — NGC 2422. The nature of Messier’s mistake, and the firm conclusion that Messier 47 and NGC 2422 are indeed the same object, was only established in 1959 by Canadian astronomer T. F. Morris.

This spectacular image of the star cluster Messier 47 was taken using the Wide Field Imager camera, installed on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile. This young open cluster is dominated by a sprinkling of brilliant blue stars but also contains a few contrasting red giant stars. Credit: ESO
This spectacular image of the star cluster Messier 47 was taken using the Wide Field Imager camera, installed on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile. This young open cluster is dominated by a sprinkling of brilliant blue stars but also contains a few contrasting red giant stars.
Credit:
ESO



The bright blue–white colours of these stars are an indication of their temperature, with hotter stars appearing bluer and cooler stars appearing redder. This relationship between colour, brightness and temperature can be visualised by use of the Planck curve. But the more detailed study of the colours of stars using spectroscopy also tells astronomers a lot more — including how fast the stars are spinning and their chemical compositions. There are also a few bright red stars in the picture — these are red giant stars that are further through their short life cycles than the less massive and longer-lived blue stars [1].

By chance Messier 47 appears close in the sky to another contrasting star cluster — Messier 46. Messier 47 is relatively close, at around 1600 light-years, but Messier 46 is located around 5500 light-years away and contains a lot more stars, with at least 500 stars present. Despite containing more stars, it appears significantly fainter due to its greater distance.

Messier 46 could be considered to be the older sister of Messier 47, with the former being approximately 300 million years old compared to the latter’s 78 million years. Consequently, many of the most massive and brilliant of the stars in Messier 46 have already run through their short lives and are no longer visible, so most stars within this older cluster appear redder and cooler.

This image of Messier 47 was produced as part of the ESO Cosmic Gems programme [2].

Notes

[1] The lifetime of a star depends primarily on its mass. Massive stars, containing many times as much material as the Sun, have short lives measured in millions of years. On the other hand much less massive stars can continue to shine for many billions of years. In a cluster, the stars all have about the same age and same initial chemical composition. So the brilliant massive stars evolve quickest, become red giants sooner, and end their lives first, leaving the less massive and cooler ones to long outlive them.

[2] The ESO Cosmic Gems programme is an outreach initiative to produce images of interesting, intriguing or visually attractive objects using ESO telescopes, for the purposes of education and public outreach. The programme makes use of telescope time that cannot be used for science observations. All data collected may also be suitable for scientific purposes, and are made available to astronomers through ESO’s science archive.

More information

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Source: ESO 

Researchers use real data rather than theory to measure the cosmos

For the first time researchers have measured large distances in the Universe using data, rather than calculations related to general relativity.

A research team from Imperial College London and the University of Barcelona has used data from astronomical surveys to measure a standard distance that is central to our understanding of the expansion of the universe.

Previously the size of this ‘standard ruler’ has only been predicted from theoretical models that rely on general relativity to explain gravity at large scales. The new study is the first to measure it using observed data. A standard ruler is an object which consistently has the same physical size so that a comparison of its actual size to its size in the sky will provide a measurement of its distance to earth.

“Our research suggests that current methods for measuring distance in the Universe are more complicated than they need to be,” said Professor Alan Heavens from the Department of Physics, Imperial College London who led the study. “Traditionally in cosmology, general relativity plays a central role in most models and interpretations. We have demonstrated that current data are powerful enough to measure the geometry and expansion history of the Universe without relying on calculations relating to general relativity.

“We hope this more data-driven approach, combined with an ever increasing wealth of observational data, could provide more precise measurements that will be useful for future projects that are planning to answer major questions around the acceleration of the Universe and dark energy.”

The standard ruler measured in the research is the baryon acoustic oscillation scale. This is a pattern of a specific length which is imprinted in the clustering of matter created by small variations in density in the very early Universe (about 400,000 years after the Big Bang). The length of this pattern, which is the same today as it was then, is the baryon acoustic oscillation scale.

The team calculated the length to be 143 Megaparsecs (nearly 480 million light years) which is similar to accepted predictions for this distance from models based on general relativity.

Published in Physical Review Letters, the findings of the research suggest it is possible to measure cosmological distances independently from models that rely on general relativity.

Einstein’s theory of general relativity replaced Newton’s law to become the accepted explanation of how gravity behaves at large scales. Many important astrophysics models are based on general relativity, including those dealing with the expansion of the Universe and black holes. However some unresolved issues surround general relativity. These include its lack of reconciliation with the laws of quantum physics and the need for it to be extrapolated many orders of magnitude in scales in order to apply it in cosmological settings. No other physics law have been extrapolated that much without needing any adjustment, so its assumptions are still open to question.

Co-author of the study, Professor Raul Jimenez from the University of Barcelona said: “The uncertainties around general relativity have motivated us to develop methods to derive more direct measurements of the cosmos, rather than relying so heavily on inferences from models. For our study we only made some minimal theoretical assumptions such as the symmetry of the Universe and a smooth expansion history.”

Co-author Professor Licia Verde from the University of Barcelona added: “There is a big difference between measuring distance and inferring its value indirectly. Usually in cosmology we can only do the latter and this is one of these rare and precious cases where we can directly measure distance. Most statements in cosmology assume general relativity works and does so on extremely large scales, which means we are often extrapolating figures out of our comfort zone. So it is reassuring to discover that we can make strong and important statements without depending on general relativity and which match previous statements. It gives one confidence that the observations we have of the Universe, as strange and puzzling as they might be, are realistic and sound!”

The research used current data from astronomical surveys on the brightness of exploding stars (supernovae) and on the regular pattern in the clustering of matter (baryonic acoustic oscillations) to measure the size of this ‘standard ruler’. The matter that created this standard ruler formed about 400,000 years after the Big Bang. This period was a time when the physics of the Universe was still relatively simple so the researchers did not need to consider more ‘exotic’ concepts such as dark energy in their measurements.

“In this study we have used measurements that are very clean,” Professor Heavens explained, “And the theory that we do apply comes from a time relatively soon after the Big Bang when the physics was also clean. This means we have what we believe to be a precise method of measurement based on observations of the cosmos. Astrophysics is an incredibly active but changeable field and the support for the different models is liable to change. Even when models are abandoned, measurements of the cosmos will survive. If we can rely on direct measurements based on real observations rather than theoretical models then this is good news for cosmology and astrophysics.”

The research was supported by the Royal Society and the European Research Council.

Source : Imperial College

Radio-optical overlay image of galaxy J1649+2635. Yellow is visible-light image; Blue is the radio image, indicating the presence of jets.

Credit: Mao et al., NRAO/AUI/NSF, Sloan Digital Sky Survey

Strange Galaxy Perplexes Astronomers

With the help of citizen scientists, a team of astronomers has found an important new example of a very rare type of galaxy that may yield valuable insight on how galaxies developed in the early Universe. The new discovery technique promises to give astronomers many more examples of this important and mysterious type of galaxy.

The galaxy they studied, named J1649+2635, nearly 800 million light-years from Earth, is a spiral galaxy, like our own Milky Way, but with prominent “jets” of subatomic particles propelled outward from its core at nearly the speed of light. The problem is that spiral galaxies are not supposed to have such large jets.

“The conventional wisdom is that such jets come only from elliptical galaxies that formed through the merger of spirals. We don’t know how spirals can have these large jets,” said Minnie Mao, of the National Radio Astronomy Observatory (NRAO).

Radio-optical overlay image of galaxy J1649+2635. Yellow is visible-light image; Blue is the radio image, indicating the presence of jets. Credit: Mao et al., NRAO/AUI/NSF, Sloan Digital Sky Survey
Radio-optical overlay image of galaxy J1649+2635. Yellow is visible-light image; Blue is the radio image, indicating the presence of jets.
Credit: Mao et al., NRAO/AUI/NSF, Sloan Digital Sky Survey



J1649+2635 is only the fourth jet-emitting spiral galaxy discovered so far. The first was found in 2003, when astronomers combined a radio-telescope image from the Karl G. Jansky Very Large Array (VLA) and a visible-light image of the same object from the Hubble Space Telescope. The second was revealed in 2011 by images from the Sloan Digital Sky Survey and the VLA, and the third, found earlier this year, also was discovered by combining radio and visible-light images.

“In order to figure out how these jets can be produced by the ‘wrong’ kind of galaxy, we realized we needed to find more of them,” Mao said.

To do that, the astronomers looked for help. That help came in the form of large collections of images from both radio and optical telescopes, and the hands-on assistance of volunteer citizen scientists. The volunteers are participants in an online project called the Galaxy Zoo, in which they look at images from the visible-light Sloan Digital Sky Survey and classify the galaxies as spiral, elliptical, or other types. Each galaxy image is inspected by multiple volunteers to ensure accuracy in the classification.

So far, more than 150,000 Galaxy Zoo participants have classified some 700,000 galaxies. Mao and her collaborators used a “superclean” subset of more than 65,000 galaxies, for which 95 percent of those viewing each galaxy’s image agreed on the classification. About 35,000 of those are spiral galaxies. J1649+2635 had been classified by 31 Galaxy Zoo volunteers, 30 of whom agreed that it is a spiral.

Next, the astronomers decided to cross-match the visible-light spirals with galaxies in a catalog that combines data from the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty Centimeters survey, both done using the VLA. This job was done by Ryan Duffin, a University of Virginia undergraduate working as an NRAO summer student. Duffin’s cross-matching showed that J1649+2635 is both a spiral galaxy and has powerful twin radio jets.

“This is the first time that a galaxy was first identified as a spiral, then subsequently found to have large radio jets,” Duffin said. “It was exciting to make such a rare find,” he added.

Jets such as those seen coming from J1649+2635 are propelled by the gravitational energy of a supermassive black hole at the core of the galaxy. Material pulled toward the black hole forms a rapidly-rotating disk, and particles are accelerated outward along the poles of the disk. The collision that presumably forms an elliptical galaxy disrupts gas in the merging galaxies and provides “fuel” for the disk and acceleration mechanism. That same disruption, however, is expected to destroy any spiral structure as the galaxies merge into one.

J1649+2635 is unusual not only because of its jets, but also because it is the first example of a “grand design” spiral galaxy with a large “halo” of visible-light emission surrounding it. 

“This galaxy presents us with many mysteries. We want to know how it became such a strange beast,” Mao said. “Did it have a unique type of merger that preserved its spiral structure? Was it an elliptical that had another collision that made it re-grow spiral arms? Is its unique character the result of interaction with its environment?”

“We will study it further, but in addition, we need to see if there are more like it,” Mao said.

“We hope that with projects like the Galaxy Zoo and another called Radio Galaxy Zoo, those thousands of citizen scientists can help us find many more galaxies like this one so we can answer all our questions,” Mao said. Mao and her colleagues have dubbed these rare galaxies “Spiral DRAGNs,” an acronym for the technical description, “Double-lobed Radio sources Associated with Galactic Nuclei.”

Mao and Duffin worked with Frazer Owen, Emmanuel Momjian, and Mark Lacy, also of the NRAO; Bill Keel of the University of Alabama; Glenn Morrison of the University of Hawaii and the Canada-France-Hawaii Telescope; Tony Mroczkowski of the Naval Research Laboratory; Susan Neff of NASA’s Goddard Space Flight Center; Ray Norris of CSIRO Astronomy and Space Science in Australia; Henrique Schmitt of the Naval Research Laboratory; and Vicki Toy and Sylvain Veilleux of the University of Maryland. The scientists are reporting their findings in theMonthly Notices of the Royal Astronomical Society. 

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Source: NRAO

Join the hunt to break the Higgs boson ‘barrier’

Online volunteers are being asked to spot tiny explosions that could be evidence for new particles that will require new models of physics.

Higgs Hunters [www.higgshunters.org], a project launched today by UK and US scientists working on the ATLAS experiment, enables members of the public to view 25,000 images recorded at CERN’s Large Hadron Collider. By tagging the origins of tracks on these images volunteers could spot sub-atomic explosions caused when a Higgs boson ‘dies’, which some scientists think could generate a kind of particle new to physics.

‘If anything discovering what happens when a Higgs boson ‘dies’ could be even more exciting that the original discovery that the Higgs boson exists made at CERN back in 2012,’ said Professor Alan Barr of Oxford University’s Department of Physics, lead scientist of the Higgs Hunters project. ‘We want volunteers to help us go beyond the Higgs boson ‘barrier’ by examining pictures of these collisions and telling us what they see.’

In the ATLAS experiment at CERN’s Large Hadron Collider protons are smashed together at up to one billion kilometres per hour. Such collisions can generate Higgs bosons: these are known to rapidly decay into other particles and some scientists believe these could include a new type of previously unobserved particle. Simulations predict that these new particles should leave tell-tale tracks inside the ATLAS experiment, which computer programs find difficult to identify, but which human eyes can often pick out.

Professor Andy Haas of New York University said: ‘Writing computer algorithms to identify these particles is tough, so we’re excited to see how much better we can do when people help us with the hunt.’

Professor Chris Lintott of Oxford University’s Department of Physics, Zooniverse Principal Investigator, said: ‘The most exciting citizen science comes when you find the unexpected lurking amongst the data, and who knows what could be out there in the data from the ATLAS experiment?’

Professor Dave Charlton, spokesperson of the ATLAS Collaboration, said: ‘With the Higgs Hunters project, people can look directly at ATLAS data to help us find unexpected phenomena – perhaps volunteers will be able to spot new physics with their own eyes!’

A successful detection of new particles would be a huge leap forward for particle physics, as they would lie beyond the Standard Model – the current best theory of the fundamental constituents of the Universe.

Source: Oxford University

hs-2014-48-a-web_print

The Party’s Over for These Youthful Compact Galaxies

Researchers using NASA’s Hubble Space Telescope and Chandra X-ray Observatory have uncovered young, massive, compact galaxies whose raucous star-making parties are ending early. The firestorm of star birth has blasted out most of the remaining gaseous fuel needed to make future generations of stars. Now the party’s over for these gas-starved galaxies, and they are on track to possibly becoming so-called “red and dead galaxies,” composed only of aging stars.

Astronomers have debated for decades how massive galaxies rapidly evolve from active star-forming machines to star-starved graveyards. Previous observations of these galaxies reveal geysers of gas shooting into space at up to 2 million miles an hour. Astronomers have suspected that powerful monster black holes lurking at the centers of the galaxies triggered the gaseous outflows and shut down star birth by blowing out any remaining fuel.

Now an analysis of 12 merging galaxies at the end of their star-birthing frenzy is showing that the stars themselves are turning out the lights on their own star-making party. This happened when the universe was half its current age of 13.7 billion years.

“Before our study, the common belief was that stars cannot drive high-velocity outflows in galaxies; only more powerful supermassive black holes can do that,” explained Paul Sell of Texas Tech University in Lubbock, lead author of a science paper describing the study’s results. “Through our analysis we found that if you have a compact enough starburst, which Hubble showed was the case with these galaxies, you can actually produce the velocities of the outflows we observed from the stars alone without needing to invoke the black hole.”

Team member Christy Tremonti of the University of Wisconsin-Madison first identified the galaxies from the Sloan Digital Sky Survey as post-starburst objects spouting high-speed gaseous fountains. The sharp visible-light views from Hubble’s Wide Field Camera 3 show that the outflows are arising from the most compact galaxies yet found. These galaxies contain as much mass as our Milky Way galaxy, but packed into a much smaller area. The smallest galaxies are about 650 light-years across.

In such small regions of space, these galaxies are forming a few hundred suns a year. (By comparison, the Milky Way makes only about one sun a year.) This makes for a rowdy party that wears itself out quickly, in only a few tens of millions of years. One reason for the stellar shutdown is that the gas rapidly heats up, becoming too hot to contract under gravity to form new stars. Another possibility is that the star-birthing frenzy blasts out most of the star-making gas via powerful stellar winds.

“The biggest surprise from Hubble was the realization that the newly formed stars were born so close together,” said team member Aleks Diamond-Stanic of the University of Wisconsin-Madison, who first suggested the possibility of starburst-driven outflows from these galaxies in a 2012 science paper. “The extreme physical conditions at the centers of these galaxies explain how they can expel gas at millions of miles per hour.”

To identify the mechanism triggering the high-velocity outflows, Sell and his team used the Chandra X-ray Observatory and other telescopes to determine whether the galaxies’ supermassive black holes (weighing up to a billion suns) were the powerhouses driving them. After analyzing all of the observations, the team concluded that the black holes were not the source of the outflows. Rather, it was the powerful stellar winds from the most massive and short-lived stars at the end of their lives, combined with their explosive deaths as supernovae.


hs-2014-48-a-web_print

Based on their analysis of the Hubble and Chandra data, team members suggest that the “party begins” when two gas-rich galaxies collide, funneling a torrent of cold gas into the merging galaxies’ compact center. The large amount of gas compressed into the small space ignites the birth of numerous stars. The energy from the stellar firestorm then blows out the leftover gas, quenching further star formation.

“If you stop the flow of cold gas to form stars, that’s it,” explained Sell, who conducted the research while a graduate student at the University of Wisconsin-Madison. “The stars stop forming, and the galaxy rapidly evolves and may eventually become a red, dead elliptical galaxy. These extreme starbursts are quite rare, however, so they may not grow into the typical giant elliptical galaxies seen in our nearby galactic neighborhood. They may, instead, be more compact.”

The team’s results were published in the July 11 edition of the Monthly Notices of the Royal Astronomical Society.

Source: Hubble Site

This artist’s impression depicts the formation of a galaxy cluster in the early Universe. The galaxies are vigorously forming new stars and interacting with each other. Such a scene closely resembles the Spiderweb Galaxy (formally known as MRC 1138-262) and its surroundings, which is one of the best-studied protoclusters.

Credit:

ESO/M. Kornmesser

Universe may face a darker future

Since the discovery of the accelerated expansion of the universe in 1997 by High-Z Supernova Team led by Prof. Brian Schmidt and Adam Rees, and by Supernova Cosmology Project Team led by Prof. Saul Perlmutter, the question of the nature of this expansion and the role of the mysterious dark energy has puzzled the minds of many theoretical and observational physicists/astrophysicists.

Another puzzling question in astronomy comes from the unusual behavior of the stars revolving around the galaxies with higher velocities than expected if we consider the apparent baryonic matter in the galaxy.This has led to many new questions related to something we called the dark matter, another unexplained phenomenon.

 


 

New research offers a novel insight into the nature of dark matter and dark energy and what the future of our Universe might be.

Researchers in Portsmouth and Rome have found hints that dark matter, the cosmic scaffolding on which our Universe is built, is being slowly erased, swallowed up by dark energy.

The findings appear in the journal Physical Review Letters, published by the American Physical Society. In the journal cosmologists at the Universities of Portsmouth and Rome, argue that the latest astronomical data favours a dark energy that grows as it interacts with dark matter, and this appears to be slowing the growth of structure in the cosmos.

Professor David Wands, Director of Portsmouth’sInstitute of Cosmology and Gravitation, is one of the research team.

He said: “This study is about the fundamental properties of space-time. On a cosmic scale, this is about our Universe and its fate.

“If the dark energy is growing and dark matter is evaporating we will end up with a big, empty, boring Universe with almost nothing in it.

 

“Dark matter provides a framework for structures to grow in the Universe. The galaxies we see are built on that scaffolding and what we are seeing here, in these findings, suggests that dark matter is evaporating, slowing that growth of structure.”

Cosmology underwent a paradigm shift in 1998 when researchers announced that the rate at which the Universe was expanding was accelerating. The idea of a constant dark energy throughout space-time (the “cosmological constant”) became the standard model of cosmology, but now the Portsmouth and Rome researchers believe they have found a better description, including energy transfer between dark energy and dark matter.

Research students Valentina Salvatelli and Najla Said from the University of Rome worked in Portsmouth with Dr Marco Bruni and Professor Wands, and with Professor Alessandro Melchiorri in Rome. They examined data from a number of astronomical surveys, including the Sloan Digital Sky Survey, and used the growth of structure revealed by these surveys to test different models of dark energy.

Professor Wands said: “Valentina and Najla spent several months here over the summer looking at the consequences of the latest observations. Much more data is available now than was available in 1998 and it appears that the standard model is no longer sufficient to describe all of the data. We think we’ve found a better model of dark energy.

“Since the late 1990s astronomers have been convinced that something is causing the expansion of our Universe to accelerate. The simplest explanation was that empty space – the vacuum – had an energy density that was a cosmological constant. However there is growing evidence that this simple model cannot explain the full range of astronomical data researchers now have access to; in particular the growth of cosmic structure, galaxies and clusters of galaxies, seems to be slower than expected.”

Professor Dragan Huterer,of the University of Michigan, has read the research and said scientists need to take notice of the findings.

He said: “The paper does look very interesting. Any time there is a new development in the dark energy sector we need to take notice since so little is understood about it. I would not say, however, that I am surprised at the results, that they come out different than in the simplest model with no interactions. We’ve known for some months now that there is some problem in all data fitting perfectly to the standard simplest model.”

Source: Materials taken from Uop News

This artist’s impression shows the dust and gas around the double star system GG Tauri-A. Researchers using ALMA have detected gas in the region between two discs in this binary system. This may allow planets to form in the gravitationally perturbed environment of the binary. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets.

Credit:

ESO/L. Calçada

Planet-forming Lifeline Discovered in a Binary Star System

ALMA Examines Ezekiel-like “Wheel in a Wheel” of Dust and Gas


For the first time, researchers using ALMA have detected a streamer of gas flowing from a massive outer disc toward the inner reaches of a binary star system. This never-before-seen feature may be responsible for sustaining a second, smaller disc of planet-forming material that otherwise would have disappeared long ago. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets. The results are published in the journal Nature on 30 October 2014.

A research group led by Anne Dutrey from the Laboratory of Astrophysics of Bordeaux, France and CNRS used theAtacama Large Millimeter/submillimeter Array (ALMA) to observe the distribution of dust and gas in a multiple-star system called GG Tau-A [1]. This object is only a few million years old and lies about 450 light-years from Earth in the constellation of Taurus (The Bull).

This artist’s impression shows the dust and gas around the double star system GG Tauri-A. Researchers using ALMA have detected gas in the region between two discs in this binary system. This may allow planets to form in the gravitationally perturbed environment of the binary. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets. Credit: ESO/L. Calçada
This artist’s impression shows the dust and gas around the double star system GG Tauri-A. Researchers using ALMA have detected gas in the region between two discs in this binary system. This may allow planets to form in the gravitationally perturbed environment of the binary. Half of Sun-like stars are born in binary systems, meaning that these findings will have major consequences for the hunt for exoplanets.
Credit:
ESO/L. Calçada

Like a wheel in a wheel, GG Tau-A contains a large, outer disc encircling the entire system as well as an inner disc around the main central star. This second inner disc has a mass roughly equivalent to that of Jupiter. Its presence has been an intriguing mystery for astronomers since it is losing material to its central star at a rate that should have depleted it long ago.

While observing these structures with ALMA, the team made the exciting discovery of gas clumps in the region between the two discs. The new observations suggest that material is being transferred from the outer to the inner disc, creating a sustaining lifeline between the two [2].

Material flowing through the cavity was predicted by computer simulations but has not been imaged before. Detecting these clumps indicates that material is moving between the discs, allowing one to feed off the other,” explains Dutrey. “These observations demonstrate that material from the outer disc can sustain the inner disc for a long time. This has major consequences for potential planet formation.”

Planets are born from the material left over from star birth. This is a slow process, meaning that an enduring disc is a prerequisite for planet formation. If the feeding process into the inner disc now seen with ALMA occurs in other multiple-star systems the findings introduce a vast number of new potential locations to find exoplanets in the future.

The first phase of exoplanet searches was directed at single-host stars like the Sun [3]. More recently it has been shown that a large fraction of giant planets orbit binary-star systems. Now, researchers have begun to take an even closer look and investigate the possibility of planets orbiting the individual stars of multiple-star systems. The new discovery supports the possible existence of such planets, giving exoplanet discoverers new happy hunting grounds.

Emmanuel Di Folco, co-author of the paper, concludes: “Almost half the Sun-like stars were born in binary systems. This means that we have found a mechanism to sustain planet formation that applies to a significant number of stars in the Milky Way. Our observations are a big step forward in truly understanding planet formation.

Notes

[1] GG Tau-A is part of a more complex multiple-star system called GG Tauri. Recent observations of GG Tau-A using the VLTI have revealed that one of the stars — GG Tau Ab, the one not surrounded by a disc — is itself a close binary, consisting of GG Tau-Ab1 and GG Tau-Ab2. This introduced a fifth component to the GG Tau system.

[2] An earlier result with ALMA showed an example of a single star with material flowing inwards from the outer part of its disc.

[3] Because orbits in binary stars are more complex and less stable, it was believed that forming planets in these systems would be more challenging than around single stars.

Source: ESO

This artist’s impression depicts the formation of a galaxy cluster in the early Universe. The galaxies are vigorously forming new stars and interacting with each other. Such a scene closely resembles the Spiderweb Galaxy (formally known as MRC 1138-262) and its surroundings, which is one of the best-studied protoclusters.

Credit:

ESO/M. Kornmesser

Syracuse Physicists Closer to Understanding Balance of Matter, Antimatter

Physicists in the College of Arts and Sciences have made important discoveries regarding Bs meson particles—something that may explain why the universe contains more matter than antimatter. Distinguished Professor Sheldon Stone and his colleagues recently announced their findings at a workshop at CERN in Geneva, Switzerland. Titled “Implications of LHCb Measurements and Their Future Prospects,” the workshop enabled him and other members of the Large Hadron Collider beauty (LHCb) Collaboration to share recent data results. The LHCb Collaboration is a multinational experiment that seeks to explore what happened after the Big Bang, causing matter to survive and flourish in the Universe. LHCb is an international experiment, based at CERN, involving more than 800 scientists and engineers from all over the world. At CERN, Stone heads up a team of 15 physicists from Syracuse. “Many international experiments are interested in the Bs meson because it oscillates between a matter particle and an antimatter particle,” says Stone, who heads up Syracuse’s High-Energy Physics Group. “Understanding its properties may shed light on charge-parity [CP] violation, which refers to the balance of matter and antimatter in the universe and is one of the biggest challenges of particle physics.” Scientists believe that, 14 billion years ago, energy coalesced to form equal quantities of matter and antimatter. As the universe cooled and expanded, its composition changed. Antimatter all but disappeared after the Big Bang (approximately 3.8 billion years ago), leaving behind matter to create everything from stars and galaxies to life on Earth. “Something must have happened to cause extra CP violation and, thus, form the universe as we know it,” Stone says. He thinks part of the answer lies in the Bs meson, which contains an antiquark and a strange quark and is bound together by a strong interaction. (A quark is a hard, point-like object found inside a proton and neutron that forms the nucleus of an atom.) Enter CERN, a European research organization that operates the world’s largest particle physics laboratory. In Geneva, Stone and his research team—which includes Liming Zhang, a former Syracuse research associate who is now a professor at Tsinghua University in Beijing, China—have studied two landmark experiments that took place at Fermilab, a high-energy physics laboratory near Chicago, in 2009. The experiments involved the Collider Detector at Fermilab (CDF) and the DZero (D0), four-story detectors that were part of Fermilab’s now-defunct Tevatron, then one of the world’s highest-energy particle accelerators. “Results from D0 and CDF showed that the matter-antimatter oscillations of the Bs meson deviated from the standard model of physics, but the uncertainties of their results were too high to make any solid conclusions,” Stone says. He and Zhang had no choice but to devise a technique allowing for more precise measurements of Bs mesons. Their new result shows that the difference in oscillations between the Bs and anti-Bs meson is just as the standard model has predicted. Stone says the new measurement dramatically restricts the realms where new physics could be hiding, forcing physicists to expand their searches into other areas. “Everyone knows there is new physics. We just need to perform more sensitive analyses to sniff it out,” he adds.

Source: Syracuse University

This artist’s impression depicts the formation of a galaxy cluster in the early Universe. The galaxies are vigorously forming new stars and interacting with each other. Such a scene closely resembles the Spiderweb Galaxy (formally known as MRC 1138-262) and its surroundings, which is one of the best-studied protoclusters.

Credit:

ESO/M. Kornmesser

Construction Secrets of a Galactic Metropolis

Astronomers have used the APEX telescope to probe a huge galaxy cluster that is forming in the early Universe and revealed that much of the star formation taking place is not only hidden by dust, but also occurring in unexpected places. This is the first time that a full census of the star formation in such an object has been possible.


This artist’s impression depicts the formation of a galaxy cluster in the early Universe. The galaxies are vigorously forming new stars and interacting with each other. Such a scene closely resembles the Spiderweb Galaxy (formally known as MRC 1138-262) and its surroundings, which is one of the best-studied protoclusters. Credit: ESO/M. Kornmesser
This artist’s impression depicts the formation of a galaxy cluster in the early Universe. The galaxies are vigorously forming new stars and interacting with each other. Such a scene closely resembles the Spiderweb Galaxy (formally known as MRC 1138-262) and its surroundings, which is one of the best-studied protoclusters.
Credit:
ESO/M. Kornmesser

Galaxy clusters are the largest objects in the Universe held together by gravity but their formation is not well understood. TheSpiderweb Galaxy (formally known as MRC 1138-262 [1]) and its surroundings have been studied for twenty years, using ESO and other telescopes [2], and is thought to be one of the best examples of a protocluster in the process of assembly, more than ten billion years ago.

But Helmut Dannerbauer (University of Vienna, Austria) and his team strongly suspected that the story was far from complete. They wanted to probe the dark side of star formation and find out how much of the star formation taking place in the Spiderweb Galaxy cluster was hidden from view behind dust.

The team used the LABOCA camera on the APEX telescope in Chile to make 40 hours of observations of the Spiderweb Cluster at millimetre wavelengths — wavelengths of light that are long enough to peer right through most of the thick dust clouds. LABOCA has a wide field and is the perfect instrument for this survey.

Carlos De Breuck (APEX project scientist at ESO, and a co-author of the new study) emphasises: “This is one of the deepest observations ever made with APEX and pushes the technology to its limits — as well as the endurance of the staff working at the high-altitude APEX site, 5050 metres above sea level.

The APEX observations revealed that there were about four times as many sources detected in the area of the Spiderweb compared to the surrounding sky. And by carefully comparing the new data with complementary observations made at different wavelengths they were able to confirm that many of these sources were at the same distance as the galaxy cluster itself and must be parts of the forming cluster.

Helmut Dannerbauer explains: “The new APEX observations add the final piece needed to create a complete census of all inhabitants of this mega star city. These galaxies are in the process of formation so, rather like a construction site on Earth, they are very dusty.”

But a surprise awaited the team when they looked at where the newly detected star formation was taking place. They were expecting to find this star formation region on the large filaments connecting galaxies. Instead, they found it concentrated mostly in a single region, and that region is not even centred on the central Spiderweb Galaxy in the protocluster [3].

Helmut Dannerbauer concludes: “We aimed to find the hidden star formation in the Spiderweb cluster — and succeeded — but we unearthed a new mystery in the process; it was not where we expected! The mega city is developing asymmetrically.

To continue the story further observations are needed — and ALMA will be the perfect instrument to take the next steps and study these dusty regions in far greater detail.

Notes

[1] The Spiderweb Galaxy contains a supermassive black hole and is a powerful source of radio waves — which is what led astronomers to notice it in the first place.

[2] This region had been intensively observed by a variety of ESO telescopes since the mid-1990s. The redshift (and hence the distance) of the radio galaxy MRC1138-262 (the Spiderweb Galaxy) was first measured at La Silla. The first visitor modeFORS observations on the VLT discovered the protocluster and afterwards further observations were made with ISAAC,SINFONIVIMOS and HAWK-I. The APEX LABOCA data complement optical and near-infrared datasets from ESO telescopes. The team also used a 12-hour VLA image to cross-identify the LABOCA sources in the optical images.

[3] These dusty starbursts are thought to evolve into elliptical galaxies like those seen around us today in nearby galaxy clusters.

More information

This research was presented in a paper, “An excess of dusty starbursts related to the Spiderweb galaxy”, by Dannerbauer, Kurk, De Breuck et al., to appear online in the journal Astronomy & Astrophysics on 15 October 2014.

APEX is a collaboration between the Max Planck Institute for Radio Astronomy (MPIfR), the Onsala Space Observatory (OSO) and ESO. Operation of APEX at Chajnantor is entrusted to ESO.

The team is composed of H. Dannerbauer (University of Vienna, Austria), J. D. Kurk (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), C. De Breuck (ESO, Garching, Germany), D. Wylezalek (ESO, Garching, Germany), J. S. Santos (INAF–Osservatorio Astrofisico di Arcetri, Florence, Italy), Y. Koyama (National Astronomical Observatory of Japan, Tokyo, Japan [NAOJ]; Institute of Space Astronomical Science, Kanagawa, Japan), N. Seymour (International Centre for Radio Astronomy Research, Curtin University, Perth, Australia), M. Tanaka (NAOJ; Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Japan), N. Hatch (University of Nottingham, United Kingdom), B. Altieri (Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Cañada, Spain [HSC]), D. Coia (HSC), A. Galametz (INAF–Osservatorio di Roma, Italy), T. Kodama (NAOJ), G. Miley (Leiden Observatory, the Netherlands), H. Röttgering (Leiden Observatory), M. Sanchez-Portal (HSC), I. Valtchanov (HSC), B. Venemans (Max-Planck Institut für Astronomie, Heidelberg, Germany) and B. Ziegler (University of Vienna).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning the 39-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Source: ESO