Tag Archives: water

ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior.
Credit:EPFL

Entering 2016 with new hope

Syed Faisal ur Rahman


 

Year 2015 left many good and bad memories for many of us. On one hand we saw more wars, terrorist attacks and political confrontations, and on the other hand we saw humanity raising voices for peace, sheltering refugees and joining hands to confront the climate change.

In science, we saw first ever photograph of light as both wave and particle. We also saw some serious development in machine learning, data sciences and artificial intelligence areas with some voices raising caution about the takeover of AI over humanity and issues related to privacy. The big question of energy and climate change remained a key point of  discussion in scientific and political circles. The biggest break through came near the end of the year with Paris deal during COP21.

The deal involving around 200 countries represent a true spirit of humanity to limit global warming below 2C and commitments for striving to keep temperatures at above 1.5C pre-industrial levels. This truly global commitment also served in bringing rival countries to sit together for a common cause to save humanity from self destruction. I hope the spirit will continue in other areas of common interest as well.

This spectacular view from the NASA/ESA Hubble Space Telescope shows the rich galaxy cluster Abell 1689. The huge concentration of mass bends light coming from more distant objects and can increase their total apparent brightness and make them visible. One such object, A1689-zD1, is located in the box — although it is still so faint that it is barely seen in this picture. New observations with ALMA and ESO’s VLT have revealed that this object is a dusty galaxy seen when the Universe was just 700 million years old. Credit: NASA; ESA; L. Bradley (Johns Hopkins University); R. Bouwens (University of California, Santa Cruz); H. Ford (Johns Hopkins University); and G. Illingworth (University of California, Santa Cruz)
This spectacular view from the NASA/ESA Hubble Space Telescope shows the rich galaxy cluster Abell 1689. The huge concentration of mass bends light coming from more distant objects and can increase their total apparent brightness and make them visible. One such object, A1689-zD1, is located in the box — although it is still so faint that it is barely seen in this picture.
New observations with ALMA and ESO’s VLT have revealed that this object is a dusty galaxy seen when the Universe was just 700 million years old.
Credit:
NASA; ESA; L. Bradley (Johns Hopkins University); R. Bouwens (University of California, Santa Cruz); H. Ford (Johns Hopkins University); and G. Illingworth (University of California, Santa Cruz)

Space Sciences also saw some enormous advancements with New Horizon sending photographs from Pluto, SpaceX successfully landed the reusable Falcon 9 rocket back after a successful launch and we also saw the discovery of the largest regular formation in the Universe,by Prof Lajos Balazs, which is a ring of nine galaxies 7 billion light years away and 5 billion light years wide covering a third of our sky.We also learnt this year that Mars once had more water than Earth’s Arctic Ocean. NASA later confirmed the evidence that water flows on the surface of Mars. The announcement led to some interesting insight into the atmospheric studies and history of the red planet.

In the researchers' new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment. Illustration: Jose-Luis Olivares/MIT
In the researchers’ new system, a returning beam of light is mixed with a locally stored beam, and the correlation of their phase, or period of oscillation, helps remove noise caused by interactions with the environment.
Illustration: Jose-Luis Olivares/MIT

We also saw some encouraging advancements in neurosciences where we saw MIT’s researchers  developing a technique allowing direct stimulation of neurons, which could be an effective treatment for a variety of neurological diseases, without the need for implants or external connections. We also saw researchers reactivating neuro-plasticity in older mice, restoring their brains to a younger state and we also saw some good progress in combating Alzheimer’s diseases.

Quantum physics again stayed as a key area of scientific advancements. Quantu

ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior. Credit:EPFL
ight behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL have succeeded in capturing the first-ever snapshot of this dual behavior.
Credit:EPFL

m computing is getting more closer to become a viable alternative to current architecture. The packing of the single-photon detectors on an optical chip is a crucial step toward quantum-computational circuits. Researchers at the Australian National University (ANU)  performed experiment to prove that reality does not exist until it is measured.

There are many other areas where science and technology reached new heights and will hopefully continue to do so in the year 2016. I hope these advancements will not only help us in growing economically but also help us in becoming better human beings and a better society.

 

 

 

 

 

Stanford researchers solve the mystery of the dancing droplets

Years of research satisfy a graduate student’s curiosity about the molecular minuet he observed among drops of ordinary food coloring.

BY TOM ABATE


A puzzling observation, pursued through hundreds of experiments, has led Stanford researchers to a simple yet profound discovery: Under certain circumstances, droplets of fluid will move like performers in a dance choreographed by molecular physics.

“These droplets sense one another, they move and interact, almost like living cells,” said Manu Prakash, an assistant professor of bioengineering and senior author of an article published in Nature.

The unexpected findings may prove useful in semiconductor manufacturing and self-cleaning solar panels, but what truly excites Prakash is that the discovery resulted from years of persistent effort to satisfy a scientific curiosity.

Video: Stanford researchers solve the mystery of the dancing droplets

The research began in 2009 when Nate Cira, then an undergraduate at the University of Wisconsin, was doing an unrelated experiment. In the course of that experiment Cira deposited several droplets of food coloring onto a sterilized glass slide and was astonished when they began to move.

Cira replicated and studied this phenomenon alone for two years until he became a graduate student at Stanford, where he shared this curious observation with Prakash. The professor soon became hooked by the puzzle, and recruited a third member to the team: Adrien Benusiglio, a postdoctoral scholar in the Prakash Lab.

Together they spent three years performing increasingly refined experiments to learn how these tiny droplets of food coloring sense one another and move. In living cells these processes of sensing and motility are known as chemotaxis.

“We’ve discovered how droplets can exhibit behaviors akin to artificial chemotaxis,” Prakash said.

As the Nature article explains, the critical fact was that food coloring is a two-component fluid. In such fluids, two different chemical compounds coexist while retaining separate molecular identities

The droplets in this experiment consisted of two molecular compounds found naturally in food coloring: water and propylene glycol.

The researchers discovered how the dynamic interactions of these two molecular components enabled inanimate droplets to mimic some of the behaviors of living cells.

Surface tension and evaporation

Essentially, the droplets danced because of a delicate balance between surface tension and evaporation.

Evaporation is easily understood. On the surface of any liquid, some molecules convert to a gaseous state and float away.

Surface tension is what causes liquids to bead up. It arises from how tightly the molecules in a liquid bind together.

Water evaporates more quickly than propylene glycol. Water also has a higher surface tension.  These differences create a tornado-like flow inside the droplets, which not only allows them to move but also allows a single droplet to sense its neighbors.

To understand the molecular forces involved, imagine shrinking down to size and diving inside a droplet.

There, water and propylene glycol molecules try to remain evenly distributed but differences in evaporation and surface tension create turmoil within the droplet.

On the curved dome of each droplet, water molecules become gaseous and float away faster than their evaporation-averse propylene glycol neighbors.

This evaporation happens more readily on the thin lower edges of the domed droplet, leaving excess of propylene glycol there. Meanwhile, the peak of the dome has a higher concentration of water.

The water at the top exerts its higher surface tension to pull the droplet tight so it doesn’t flatten out. This tugging causes a tumbling molecular motion inside the droplet. Thus surface tension gets the droplet ready to roll.

Evaporation determines the direction of that motion. Each droplet sends aloft gaseous molecules of water like a radially emanating signal announcing the exact location of any given droplet. The droplets converge where the signal is strongest.

So evaporation provided the sensing mechanism and surface tension the pull to move droplets together in what seemed to the eye to be a careful dance.

Rule for two-component fluids

The researchers experimented with varied proportions of water and propylene glycol. Droplets that were 1 percent propylene glycol (PG) to 99 percent water exhibited much the same behavior as droplets that were two-thirds PG to just one-third water.

Based on these experiments the paper describes a “universal rule” to identify any two-component fluids that will demonstrate sensing and motility.

Adding colors to the mixtures made it easier to tell how the droplets of different concentrations behaved and created some visually striking results.

In one experiment, a droplet with more propylene glycol seems to chase a droplet with more water. In actuality, the droplet with more water exerts a higher surface tension tug, pulling the propylene droplet along.

In another experiment, researchers showed how physically separated droplets could align themselves using ever-so-slight signals of evaporation.

In a third experiment they used Sharpie pens to draw black lines on glass slides. The lines changed the surface of the slide and created a series of catch basins. The researchers filled each basin with fluids of different concentrations to create a self-sorting mechanism. Droplets bounced from reservoir to reservoir until they sensed the fluid that matched their concentration and merged with that pool.

What started as a curiosity-driven project may also have many practical implications.

The deep physical understanding of two component fluids allows the researchers to predict which fluids and surfaces will show these unusual effects. The effect is present on a large number of common surfaces and can be replicated with a number of chemical compounds.

“If necessity is the mother of invention, then curiosity is the father,” Prakash observed.

Source: Stanford News

This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.

Credit:
ESO/M. Kornmesser

Mars, the Red Planet once had more water than Earth’s Arctic Ocean

Researchers, from ESO, NASA and Keck, who are studying Mars’ atmosphere have provided some exciting results regarding the history of water on the red planet.


 

A primitive ocean on Mars held more water than Earth’s Arctic Ocean, and covered a greater portion of the planet’s surface than the Atlantic Ocean does on Earth, according to new results published today. An international team of scientists used ESO’s Very Large Telescope, along with instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility, to monitor the atmosphere of the planet and map out the properties of the water in different parts of Mars’s atmosphere over a six-year period. These new maps are the first of their kind. The results appear online in the journal Science today.

About four billion years ago, the young planet would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.

Our study provides a solid estimate of how much water Mars once had, by determining how much water was lost to space,” said Geronimo Villanueva, a scientist working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, USA, and lead author of the new paper. “With this work, we can better understand the history of water on Mars.

This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres. Credit: ESO/M. Kornmesser
This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres.
Credit:
ESO/M. Kornmesser

The new estimate is based on detailed observations of two slightly different forms of water in Mars’s atmosphere. One is the familiar form of water, made with two hydrogen atoms and one oxygen, H2O. The other is HDO, or semi-heavy water, a naturally occurring variation in which one hydrogen atom is replaced by a heavier form, called deuterium.

As the deuterated form is heavier than normal water, it is less easily lost into space through evaporation. So, the greater the water loss from the planet, the greater the ratio of HDO to H2O in the water that remains [1].

The researchers distinguished the chemical signatures of the two types of water using ESO’s Very Large Telescope in Chile, along with instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility in Hawaii [2]. By comparing the ratio of HDO to H2O, scientists can measure by how much the fraction of HDO has increased and thus determine how much water has escaped into space. This in turn allows the amount of water on Mars at earlier times to be estimated.

In the study, the team mapped the distribution of H2O and HDO repeatedly over nearly six Earth years — equal to about three Mars years — producing global snapshots of each, as well as their ratio. The maps reveal seasonal changes and microclimates, even though modern Mars is essentially a desert.

Ulli Kaeufl of ESO, who was responsible for building one of the instruments used in this study and is a co-author of the new paper, adds: “I am again overwhelmed by how much power there is in remote sensing on other planets using astronomical telescopes: we found an ancient ocean more than 100 million kilometres away!” 

The team was especially interested in regions near the north and south poles, because the polar ice caps are the planet’s largest known reservoir of water. The water stored there is thought to document the evolution of Mars’s water from the wet Noachian period, which ended about 3.7 billion years ago, to the present.

The new results show that atmospheric water in the near-polar region was enriched in HDO by a factor of seven relative to Earth’s ocean water, implying that water in Mars’s permanent ice caps is enriched eight-fold. Mars must have lost a volume of water 6.5 times larger than the present polar caps to provide such a high level of enrichment. The volume of Mars’s early ocean must have been at least 20 million cubic kilometres.

Based on the surface of Mars today, a likely location for this water would be the Northern Plains, which have long been considered a good candidate because of their low-lying ground. An ancient ocean there would have covered 19% of the planet’s surface — by comparison, the Atlantic Ocean occupies 17% of the Earth’s surface.

With Mars losing that much water, the planet was very likely wet for a longer period of time than previously thought, suggesting the planet might have been habitable for longer,” said Michael Mumma, a senior scientist at Goddard and the second author on the paper.

It is possible that Mars once had even more water, some of which may have been deposited below the surface. Because the new maps reveal microclimates and changes in the atmospheric water content over time, they may also prove to be useful in the continuing search for underground water.

Notes

[1] In oceans on Earth there are about 3200 molecules of H2O for each HDO molecule.

[2] Although probes on the Martian surface and orbiting the planet can provide much more detailed in situmeasurements, they are not suitable for monitoring the properties of the whole Martian atmosphere. This is best done using infrared spectrographs on large telescopes back on Earth.

Source: ESO


 

A plot of the transmission spectrum for exoplanet HAT-P-11b, with data from NASA's Kepler, Hubble and Spitzer observatories combined. The results show a robust detection of water absorption in the Hubble data. Transmission spectra of selected atmospheric models are plotted for comparison.
Image Credit: NASA/ESA/STScI

NASA Telescopes Find Clear Skies and Water Vapor on Exoplanet

Astronomers using data from three of NASA’s space telescopes — Hubble, Spitzer and Kepler — have discovered clear skies and steamy water vapor on a gaseous planet outside our solar system. The planet is about the size of Neptune, making it the smallest planet from which molecules of any kind have been detected.

A plot of the transmission spectrum for exoplanet HAT-P-11b, with data from NASA's Kepler, Hubble and Spitzer observatories combined. The results show a robust detection of water absorption in the Hubble data. Transmission spectra of selected atmospheric models are plotted for comparison. Image Credit: NASA/ESA/STScI
A plot of the transmission spectrum for exoplanet HAT-P-11b, with data from NASA’s Kepler, Hubble and Spitzer observatories combined. The results show a robust detection of water absorption in the Hubble data. Transmission spectra of selected atmospheric models are plotted for comparison.
Image Credit: NASA/ESA/STScI

“This discovery is a significant milepost on the road to eventually analyzing the atmospheric composition of smaller, rocky planets more like Earth,” said John Grunsfeld, assistant administrator of NASA’s Science Mission Directorate in Washington. “Such achievements are only possible today with the combined capabilities of these unique and powerful observatories.”
Clouds in a planet’s atmosphere can block the view to underlying molecules that reveal information about the planet’s composition and history. Finding clear skies on a Neptune-size planet is a good sign that smaller planets might have similarly good visibility.
“When astronomers go observing at night with telescopes, they say ‘clear skies’ to mean good luck,” said Jonathan Fraine of the University of Maryland, College Park, lead author of a new study appearing in Nature. “In this case, we found clear skies on a distant planet. That’s lucky for us because it means clouds didn’t block our view of water molecules.”
The planet, HAT-P-11b, is categorized as an exo-Neptune — a Neptune-sized planet that orbits the star HAT-P-11. It is located 120 light-years away in the constellation Cygnus. This planet orbits closer to its star than does our Neptune, making one lap roughly every five days. It is a warm world thought to have a rocky core and gaseous atmosphere. Not much else was known about the composition of the planet, or other exo-Neptunes like it, until now.
Part of the challenge in analyzing the atmospheres of planets like this is their size. Larger Jupiter-like planets are easier to see because of their impressive girth and relatively inflated atmospheres. In fact, researchers already have detected water vapor in the atmospheres of those planets. The handful of smaller planets observed previously had proved more difficult to probe partially because they all appeared to be cloudy.
In the new study, astronomers set out to look at the atmosphere of HAT-P-11b, not knowing if its weather would call for clouds. They used Hubble’s Wide Field Camera 3, and a technique called transmission spectroscopy, in which a planet is observed as it crosses in front of its parent star. Starlight filters through the rim of the planet’s atmosphere; if molecules like water vapor are present, they absorb some of the starlight, leaving distinct signatures in the light that reaches our telescopes.
Using this strategy, Hubble was able to detect water vapor in HAT-P-11b. But before the team could celebrate clear skies on the exo-Neptune, they had to show that starspots — cooler “freckles” on the face of stars — were not the real sources of water vapor. Cool starspots on the parent star can contain water vapor that might erroneously appear to be from the planet.
The team turned to Kepler and Spitzer. Kepler had been observing one patch of sky for years, and HAT-P-11b happens to lie in the field. Those visible-light data were combined with targeted Spitzer observations taken at infrared wavelengths. By comparing these observations, the astronomers figured out that the starspots were too hot to have any steam. It was at that point the team could celebrate detecting water vapor on a world unlike any in our solar system. This discovery indicates the planet did not have clouds blocking the view, a hopeful sign that more cloudless planets can be located and analyzed in the future.
“We think that exo-Neptunes may have diverse compositions, which reflect their formation histories,” said study co-author Heather Knutson of the California Institute of Technology in Pasadena. “Now with data like these, we can begin to piece together a narrative for the origin of these distant worlds.”
The results from all three telescopes demonstrate that HAT-P-11b is blanketed in water vapor, hydrogen gas and likely other yet-to-be-identified molecules. Theorists will be drawing up new models to explain the planet’s makeup and origins.
“We are working our way down the line, from hot Jupiters to exo-Neptunes,” said Drake Deming, a co-author of the study also from University of Maryland. “We want to expand our knowledge to a diverse range of exoplanets.”
The astronomers plan to examine more exo-Neptunes in the future, and hope to apply the same method to super-Earths — massive, rocky cousins to our home world with up to 10 times the mass. Although our solar system doesn’t have a super-Earth, NASA’s Kepler mission is finding them in droves around other stars. NASA’s James Webb Space Telescope, scheduled to launch in 2018, will search super-Earths for signs of water vapor and other molecules; however, finding signs of oceans and potentially habitable worlds is likely a ways off.
“The work we are doing now is important for future studies of super-Earths and even smaller planets, because we want to be able to pick out in advance the planets with clear atmospheres that will let us detect molecules,” said Knutson.
Once again, astronomers will be crossing their fingers for clear skies.

Source: NASA

Achieving agricultural sustainability through seawater

Even though our planet is called “Earth,” over 70% of its surface is composed of water. Our continued existence depends on this vital resource but it is a staggering fact that only 1% of that water is directly accessible for human use. That is mainly because about 98% of the world’s available water is salty. This means that merely “2% of the Earth’s water is fresh water; but half of it is frozen in the form of glaciers and icebergs,” as Mark Tester, Professor of Bioscience at KAUST and Principal Investigator of the Salt Lab, explains.

The scarcity of fresh water supplies, surface water found in lakes and rivers as well as underground sources, poses a major challenge in the face of a growing world population set to plateau at 9 billion people by 2050. Fresh water is an essential part of our agricultural production infrastructure required to feed ourselves. Indeed, no less than “70% of the water that we use on the planet is used for agriculture. Moreover, 40% of our food is produced under irrigation,” as Prof. Tester outlines.

Global climate change is compounding the problem of water scarcity by altering rainfall patterns, reducing rainfall in previously well watered regions. The already limited supply of fresh water is also increasingly affected by salinity. “It would be wonderful if we could unlock at least a fraction of the rest of the vast amount of the world’s water resources,” as Tester further posits.

“So, in the context of needing to produce 70% more food by 2050, we have to both stop the reduction of yield already suffered from brackish irrigation water, and also unlock some of the other 99% of the water that we’re not able to use at the moment. Both of these things call out for our ability to increase the salinity-tolerance of plants.”

Making Our Current Plants Better

Prof. Mark Tester and his group, as well as other KAUST faculty members’ groups, are actively conducting experimental research in the University’s well-equipped greenhouse to find solutions to tackle our expanding food security challenges.

“We need to raise our ability to increase food supply,” said Tester. “We need innovation in plant science, modern plant breeding (e.g. quantitative genetics) and genetic modification.”

Prof. Tester’s group is primarily focused on studying how salt-tolerant plants are able to survive in harsh environments and then using that knowledge to make less salt-tolerant plants grow better in difficult conditions.

“We are trying to improve plant yields in sub-optimal conditions – where the soil is salty or when the water used to irrigate the plants is salty,” as Prof. Tester clarifies. His group essentially looks at the “naturally occurring variability in plants.”

How are some plants naturally able to better grow in salty water while others are less able to thrive in saline conditions? “I want to know what genes are in those tough plants that are missing from the less tough plants,” said Tester.

A Greenhouse Like No Other

These efforts, combining the observation of naturally occurring variations, the discovery of characterizing genes, and the measuring of the salt tolerance of plants require that KAUST plant scientists be able to grow plants in a controlled environment. These tasks are performed in the KAUST Center for Desert Agriculture (CDA)’s high quality 1600-square-meter greenhouse.

Prof. Mark Tester pointed out a unique feature of the greenhouse: a seawater tank. “We can water plants with seawater in this greenhouse. That’s pretty unusual,” he exclaimed. The filtered seawater greatly facilitates salinity experiments.

Another particular feature of the CDA greenhouse, unique to it’s location in Saudi Arabia, is that the water is actually cooled as it arrives from the desalination plant. This is to prevent the water warming the roots of plants in the soil – roots are used to be in the cooler soil, and are particularly sensitive to being warmed.

Different Approaches to Tackling Abiotic Stress

Given the fact that a quarter of the food that we produce under irrigation is already affected by salinity, a number that is rising rapidly, finding effective ways to use seawater to grow plants is of primary importance.

Prof. Tester recognizes the value of research towards this common sustainable agriculture goal also being conducted by fellow KAUST faculty members such as Prof. Heribert Hirt, who looks at solutions to increase plants’ tolerance to drought and heat, and Prof. Magdy Mahfouz, whose research interests focus on genome-engineering across plant species.

“Together we form a package of different approaches. All the approaches are good. There’s no one right approach. One might be better than another for particular circumstances, but they can all make a valuable contribution to improving crop growth in tough conditions,” said Prof. Tester.

How Plant Science Can Improve Food Security

Among the plants being cultivated and studied in the CDA greenhouse are rice plants. Demonstrating some of the crops that have grown in this controlled environment, Prof. Tester points out how “this one species of rice feeds half of the planet. It’s really important because it feeds the poor half of the planet – mainly in Asia and Africa.”

Taking into account the vital importance of rice crops to continue feeding the world’s growing population, it’s particularly significant that rice plants, as most crop plants, are salt-sensitive. They are indeed easily negatively affected by high salinity.

So Prof. Mark Tester and his team are studying the more salt-tolerant crops, such as barley and tomatoes, in order to better understand how they tolerate salinity, and then use that knowledge to improve other vital crops for our increasing food demands.

For instance, his team is growing a particular type of tomatoes, found on the Galapagos Islands, which are amazingly able to grow right at the edge of the sea and flourish in saline water. “We’re trying to discover the genes that are in these Galapagos tomatoes that allow the plants to grow in these crazy tough conditions,” said Tester.

“We want to use that knowledge to make commercial tomatoes even tougher,” he adds. By extension, “we can then turn our attention to rice and potentially improve its salt-tolerance.”

Source : KAUST News

Global water scarcity will intensify the privatization of water resources

Local collectives should control the world’s shrinking water supplies rather than multinational companies, according to University of Leicester expert Dr Georgios Patsiaouras.

 


The world’s water reserves will increasingly fail to meet our needs over the coming decades, leaving a third of the global population without adequate drinking water by 2025, according to University of Leicester experts Dr Georgios Patsiaouras, Professor Michael Saren and Professor James Fitchett.

Local communities should be given control over the water in their area in order to stop private companies profiteering from shrinking global water supplies, says Dr Patsiaouras, Lecturer in Marketing and Consumption at the University of Leicester’s School of Management.

Ahead of World Water Week 2014, in a new research paper Dr Patsiaouras argues that increased competition for water from both the public and from industry will make it likely that a privatised, market-based water system will develop, controlled by private companies.

He predicts that nations will begin to sell key water sources – such as lakes, rivers and groundwater reserves – to companies. This will mean the supply of water around the world will soon resemble the market for oil and minerals.

Dr Patsiaouras said: “Increased competition between nations and institutions for access to clean water will create a global marketplace for buying, selling and trading water resources.”

“There will be an increase in phenomena such as water transfer, water banking and mega-engineering desalination plants emerging as alternative and competing means of managing water supply.”

This new water economy will only work in the favour of countries and communities that can afford to bid the highest amounts for water – while poorer and drought-stricken countries might see water supplies becoming even more scarce, Dr Patsiaouras warns.

To avoid this, he argues that control over water should be localised, with communities taking control over lakes and other water sources in their area, giving priority to public health over profit.

Dr Patsiaouras says the potential for community-based and cooperative alternatives for handling water supply needs to be closely examined.

He said: “Community-based water management offers an alternative solution to market-based and state-based failures.

“Although the majority of governments around the world have chosen hybrid water supply delivery models – where water supplies are controlled by both the state and private companies – the role and importance of culture and community in sustainable market development has been woefully under-examined. “

Transforming water into a global commodity is a dangerous move since water is essential for human survival, he adds.

“Cooperative alternatives have offered and will continue to offer viable solutions for the Global South, especially in light of the fact that conventional delivery systems have tended to favour the interests of wealthy citizens and affluent neighbourhoods,” he said.

Source: University of Leicester

The power of salt

MIT study investigates power generation from the meeting of river water and seawater.

By Jennifer Chu


Where the river meets the sea, there is the potential to harness a significant amount of renewable energy, according to a team of mechanical engineers at MIT.

The researchers evaluated an emerging method of power generation called pressure retarded osmosis (PRO), in which two streams of different salinity are mixed to produce energy. In principle, a PRO system would take in river water and seawater on either side of a semi-permeable membrane. Through osmosis, water from the less-salty stream would cross the membrane to a pre-pressurized saltier side, creating a flow that can be sent through a turbine to recover power.

The MIT team has now developed a model to evaluate the performance and optimal dimensions of large PRO systems. In general, the researchers found that the larger a system’s membrane, the more power can be produced — but only up to a point. Interestingly, 95 percent of a system’s maximum power output can be generated using only half or less of the maximum membrane area.

Leonardo Banchik, a graduate student in MIT’s Department of Mechanical Engineering, says reducing the size of the membrane needed to generate power would, in turn, lower much of the upfront cost of building a PRO plant.

“People have been trying to figure out whether these systems would be viable at the intersection between the river and the sea,” Banchik says. “You can save money if you identify the membrane area beyond which there are rapidly diminishing returns.”

Banchik and his colleagues were also able to estimate the maximum amount of power produced, given the salt concentrations of two streams: The greater the ratio of salinities, the more power can be generated. For example, they found that a mix of brine, a byproduct of desalination, and treated wastewater can produce twice as much power as a combination of seawater and river water.

Based on his calculations, Banchik says that a PRO system could potentially power a coastal wastewater-treatment plant by taking in seawater and combining it with treated wastewater to produce renewable energy.

“Here in Boston Harbor, at the Deer Island Waste Water Treatment Plant, where wastewater meets the sea … PRO could theoretically supply all of the power required for treatment,” Banchik says.

He and John Lienhard, the Abdul Latif Jameel Professor of Water and Food at MIT, along with Mostafa Sharqawy of King Fahd University of Petroleum and Minerals in Saudi Arabia, report their results in the Journal of Membrane Science.

Finding equilibrium in nature

The team based its model on a simplified PRO system in which a large semi-permeable membrane divides a long rectangular tank. One side of the tank takes in pressurized salty seawater, while the other side takes in river water or wastewater. Through osmosis, the membrane lets through water, but not salt. As a result, freshwater is drawn through the membrane to balance the saltier side.

“Nature wants to find an equilibrium between these two streams,” Banchik explains.

As the freshwater enters the saltier side, it becomes pressurized while increasing the flow rate of the stream on the salty side of the membrane. This pressurized mixture exits the tank, and a turbine recovers energy from this flow.

Banchik says that while others have modeled the power potential of PRO systems, these models are mostly valid for laboratory-scale systems that incorporate “coupon-sized” membranes. Such models assume that the salinity and flow of incoming streams is constant along a membrane. Given such stable conditions, these models predict a linear relationship: the bigger the membrane, the more power generated.

But in flowing through a system as large as a power plant, Banchik says, the streams’ salinity and flux will naturally change. To account for this variability, he and his colleagues developed a model based on an analogy with heat exchangers.

“Just as the radiator in your car exchanges heat between the air and a coolant, this system exchanges mass, or water, across a membrane,” Banchik says. “There’s a method in literature used for sizing heat exchangers, and we borrowed from that idea.”

The researchers came up with a model with which they could analyze a wide range of values for membrane size, permeability, and flow rate. With this model, they observed a nonlinear relationship between power and membrane size for large systems. Instead, as the area of a membrane increases, the power generated increases to a point, after which it gradually levels off. While a system may be able to produce the maximum amount of power at a certain membrane size, it could also produce 95 percent of the power with a membrane half as large.

Still, if PRO systems were to supply power to Boston’s Deer Island treatment plant, the size of a plant’s membrane would be substantial — at least 2.5 million square meters, which Banchik notes is the membrane area of the largest operating reverse osmosis plant in the world.

“Even though this seems like a lot, clever people are figuring out how to pack a lot of membrane into a small volume,” Banchik says. “For example, some configurations are spiral-wound, with flat sheets rolled up like paper towels around a central tube. It’s still an active area of research to figure out what the modules would look like.”

“Say we’re in a place that could really use desalinated water, like California, which is going through a terrible drought,” Banchik adds. “They’re building a desalination plant that would sit right at the sea, which would take in seawater and give Californians water to drink. It would also produce a saltier brine, which you could mix with wastewater to produce power. More research needs to be done to see whether it can be economically viable, but the science is sound.”

This work was funded by the King Fahd University of Petroleum and Minerals through the Center for Clean Water and Clean Energy and by the National Science Foundation.

Source: MIT News Office

Dr Horst Punzmann (left) and Professor Michael Shats test their wave-generated tractor beam. Photo by Stuart Hay. Credit : ANU

Physicists create water tractor beam

Dr Horst Punzmann (left) and Professor Michael Shats test their wave-generated tractor beam. Photo by Stuart Hay. Credit : ANU
Dr Horst Punzmann (left) and Professor Michael Shats test their wave-generated tractor beam. Photo by Stuart Hay. Credit : ANU

Physicists at The Australian National University have created a tractor beam on water, providing a radical new technique that could confine oil spills, manipulate floating objects or explain rips at the beach.

The group, led by Professor Michael Shats, discovered they can control water flow patterns with simple wave generators, enabling them to move floating objects at will.

“We have figured out a way of creating waves that can force a floating object to move against the direction of the wave,” said Dr Horst Punzmann, from the Research School of Physics and Engineering, who led the project.

“No one could have guessed this result,” he said.

News Video 

The new technique gives scientists a way of controlling things adrift on water in a way they have never had before, resembling sci-fi tractor beams that draw in objects.

Using a ping-pong ball in a wave tank, the group worked out the size and frequency of the waves required to move the ball in whichever direction they want.

Advanced particle tracking tools, developed by team members Dr Nicolas Francois and Dr Hua Xia, revealed that the waves generate currents on the surface of the water.

“We found that above a certain height, these complex three-dimensional waves generate flow patterns on the surface of the water,” Professor Shats said. “The tractor beam is just one of the patterns, they can be inward flows, outward flows or vortices.”

The team also experimented with different shaped plungers to generate different swirling flow patterns.

As yet no mathematical theory can explain these experiments, Dr Punzmann said.

“It’s one of the great unresolved problems, yet anyone in the bathtub can reproduce it. We were very surprised no one had described it before.”

Source : ANU